Busra Ozturk Aydin , Baris Anil , Yeliz Demir , Aleksandra Rakić , Dušan Dimić , Derya Aktas Anil
{"title":"二氢恶唑衍生物的抗糖尿病特性:作为醛糖还原酶和α-葡萄糖苷酶抑制剂的体外和硅内评价。","authors":"Busra Ozturk Aydin , Baris Anil , Yeliz Demir , Aleksandra Rakić , Dušan Dimić , Derya Aktas Anil","doi":"10.1016/j.abb.2025.110521","DOIUrl":null,"url":null,"abstract":"<div><div>Proteins included in type 2 diabetes mellitus are potential targets for minimizing the disease progression. In this contribution, fourteen cinnamoyl compounds were synthesized and characterized, leading to five new oxazole derivatives. Their structures were optimized at the B3LYP/6–311++G(d,p) level of theory, and the global and local reactivity parameters were calculated. Based on these parameters, the reactive sites were determined. The experimental inhibitory effect towards aldose reductase (ALR2) and α-glucosidase (α-Glu) was followed, with some of the compounds showing higher activity than standard compounds, epalrestat, and acarbose. The interactions at the molecular level were investigated by molecular docking simulation, and the specific binding explained the relative reactivity order. The toxicity of compounds was assessed through ecotoxicology examination.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"771 ","pages":"Article 110521"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antidiabetic properties of dihydrooxazole Derivatives: In vitro and in silico evaluation as potential aldose reductase and α-glucosidase inhibitors\",\"authors\":\"Busra Ozturk Aydin , Baris Anil , Yeliz Demir , Aleksandra Rakić , Dušan Dimić , Derya Aktas Anil\",\"doi\":\"10.1016/j.abb.2025.110521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proteins included in type 2 diabetes mellitus are potential targets for minimizing the disease progression. In this contribution, fourteen cinnamoyl compounds were synthesized and characterized, leading to five new oxazole derivatives. Their structures were optimized at the B3LYP/6–311++G(d,p) level of theory, and the global and local reactivity parameters were calculated. Based on these parameters, the reactive sites were determined. The experimental inhibitory effect towards aldose reductase (ALR2) and α-glucosidase (α-Glu) was followed, with some of the compounds showing higher activity than standard compounds, epalrestat, and acarbose. The interactions at the molecular level were investigated by molecular docking simulation, and the specific binding explained the relative reactivity order. The toxicity of compounds was assessed through ecotoxicology examination.</div></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":\"771 \",\"pages\":\"Article 110521\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986125002346\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125002346","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Antidiabetic properties of dihydrooxazole Derivatives: In vitro and in silico evaluation as potential aldose reductase and α-glucosidase inhibitors
Proteins included in type 2 diabetes mellitus are potential targets for minimizing the disease progression. In this contribution, fourteen cinnamoyl compounds were synthesized and characterized, leading to five new oxazole derivatives. Their structures were optimized at the B3LYP/6–311++G(d,p) level of theory, and the global and local reactivity parameters were calculated. Based on these parameters, the reactive sites were determined. The experimental inhibitory effect towards aldose reductase (ALR2) and α-glucosidase (α-Glu) was followed, with some of the compounds showing higher activity than standard compounds, epalrestat, and acarbose. The interactions at the molecular level were investigated by molecular docking simulation, and the specific binding explained the relative reactivity order. The toxicity of compounds was assessed through ecotoxicology examination.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.