脑卒中加重脑淀粉样血管病小鼠的呼吸障碍和认知障碍。

IF 7 2区 医学 Q1 GERIATRICS & GERONTOLOGY
YuXing Zhang, Ahmad El Hamamy, Zahid Iqbal, Arya Ranjan, Destiny Sumani, Hung Wen Lin, Louise D McCullough, Jun Li
{"title":"脑卒中加重脑淀粉样血管病小鼠的呼吸障碍和认知障碍。","authors":"YuXing Zhang, Ahmad El Hamamy, Zahid Iqbal, Arya Ranjan, Destiny Sumani, Hung Wen Lin, Louise D McCullough, Jun Li","doi":"10.14336/AD.2025.0474","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a known risk factor for dementia. Most Alzheimer's patients exhibit mixed neuropathology, with evidence of both ischemic damage and amyloid-beta (Aβ) plaque accumulation. Breathing disorders, such as apnea, are also associated with cognitive dysfunction and dementia progression. We hypothesized that stroke exacerbates respiratory dysfunction and cognitive impairment in Tg-SwDI mice, a model of cerebral amyloid angiopathy (CAA). Female CAA mice (11-13 months old) underwent permanent distal middle cerebral artery occlusion (pd-MCAO) surgery, with age- and sex-matched wild-type and sham-operated controls. Cognitive assessments included the Barnes maze, and novel object recognition test (NORT). Respiratory metrics were quantified using whole-body plethysmography, while immunohistochemistry measured Aβ deposition in the hippocampus and cortex, astrocytic markers (C3⁺GFAP⁺ for A1; S100A10⁺GFAP⁺ for A2) in the retrotrapezoid nucleus (RTN), and lymphatic vessel area (LYVE1) in deep cervical lymph nodes (dCLNs). Aβ in cerebrospinal fluid was also assessed. CAA mice without stroke exhibited higher apnea rates and impaired cognitive performance compared to wild-type controls. Stroke further increased apnea events and worsened Barnes maze escape latencies in CAA mice. Molecular analysis revealed an increase in GFAP as well as in A1 astrocytes and a reduction in A2 astrocytes in the RTN following stroke. Additionally, stroke accelerated Aβ deposition in the hippocampus and cortex while reducing Aβ clearance via cerebrospinal fluid and dCLNs. These findings suggest that stroke exacerbates respiratory dysfunction, impairs glymphatic-lymphatic clearance, and accelerates cognitive decline in CAA mice. Targeting post-stroke respiratory dysfunction may offer therapeutic potential for mitigating ischemic damage in dementia patients.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stroke Exacerbates Respiratory Disorder and Cognition Impairment in Mice with Cerebral Amyloid Angiopathy.\",\"authors\":\"YuXing Zhang, Ahmad El Hamamy, Zahid Iqbal, Arya Ranjan, Destiny Sumani, Hung Wen Lin, Louise D McCullough, Jun Li\",\"doi\":\"10.14336/AD.2025.0474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke is a known risk factor for dementia. Most Alzheimer's patients exhibit mixed neuropathology, with evidence of both ischemic damage and amyloid-beta (Aβ) plaque accumulation. Breathing disorders, such as apnea, are also associated with cognitive dysfunction and dementia progression. We hypothesized that stroke exacerbates respiratory dysfunction and cognitive impairment in Tg-SwDI mice, a model of cerebral amyloid angiopathy (CAA). Female CAA mice (11-13 months old) underwent permanent distal middle cerebral artery occlusion (pd-MCAO) surgery, with age- and sex-matched wild-type and sham-operated controls. Cognitive assessments included the Barnes maze, and novel object recognition test (NORT). Respiratory metrics were quantified using whole-body plethysmography, while immunohistochemistry measured Aβ deposition in the hippocampus and cortex, astrocytic markers (C3⁺GFAP⁺ for A1; S100A10⁺GFAP⁺ for A2) in the retrotrapezoid nucleus (RTN), and lymphatic vessel area (LYVE1) in deep cervical lymph nodes (dCLNs). Aβ in cerebrospinal fluid was also assessed. CAA mice without stroke exhibited higher apnea rates and impaired cognitive performance compared to wild-type controls. Stroke further increased apnea events and worsened Barnes maze escape latencies in CAA mice. Molecular analysis revealed an increase in GFAP as well as in A1 astrocytes and a reduction in A2 astrocytes in the RTN following stroke. Additionally, stroke accelerated Aβ deposition in the hippocampus and cortex while reducing Aβ clearance via cerebrospinal fluid and dCLNs. These findings suggest that stroke exacerbates respiratory dysfunction, impairs glymphatic-lymphatic clearance, and accelerates cognitive decline in CAA mice. Targeting post-stroke respiratory dysfunction may offer therapeutic potential for mitigating ischemic damage in dementia patients.</p>\",\"PeriodicalId\":7434,\"journal\":{\"name\":\"Aging and Disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14336/AD.2025.0474\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2025.0474","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中风是痴呆症的一个已知危险因素。大多数阿尔茨海默病患者表现出混合的神经病理学,既有缺血性损伤的证据,也有淀粉样蛋白- β (Aβ)斑块积累的证据。呼吸障碍,如呼吸暂停,也与认知功能障碍和痴呆进展有关。我们假设中风加重了Tg-SwDI小鼠(一种脑淀粉样血管病(CAA)模型)的呼吸功能障碍和认知障碍。雌性CAA小鼠(11-13个月大)接受永久性大脑中远端动脉闭塞(pd-MCAO)手术,并与年龄和性别匹配的野生型和假手术对照。认知评估包括巴恩斯迷宫和新物体识别测试(NORT)。采用全身体积脉搏图定量呼吸指标,免疫组织化学测量海马和皮层中Aβ沉积、星形胶质细胞标志物(C3 + GFAP + for A1;S100A10 + GFAP +用于A2)后梯形核(RTN)和颈深淋巴结(dCLNs)淋巴管区(LYVE1)。测定脑脊液中Aβ的含量。与野生型对照组相比,没有中风的CAA小鼠表现出更高的呼吸暂停率和认知能力受损。中风进一步增加了CAA小鼠的呼吸暂停事件和巴恩斯迷宫逃避潜伏期。分子分析显示,中风后RTN中GFAP和A1星形胶质细胞增加,A2星形胶质细胞减少。此外,中风加速了Aβ在海马和皮层的沉积,同时减少了Aβ通过脑脊液和dcln的清除。这些发现表明,中风加重了CAA小鼠的呼吸功能障碍,损害了淋巴淋巴清除,并加速了认知能力下降。针对脑卒中后呼吸功能障碍可能为减轻痴呆患者的缺血性损伤提供治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stroke Exacerbates Respiratory Disorder and Cognition Impairment in Mice with Cerebral Amyloid Angiopathy.

Stroke is a known risk factor for dementia. Most Alzheimer's patients exhibit mixed neuropathology, with evidence of both ischemic damage and amyloid-beta (Aβ) plaque accumulation. Breathing disorders, such as apnea, are also associated with cognitive dysfunction and dementia progression. We hypothesized that stroke exacerbates respiratory dysfunction and cognitive impairment in Tg-SwDI mice, a model of cerebral amyloid angiopathy (CAA). Female CAA mice (11-13 months old) underwent permanent distal middle cerebral artery occlusion (pd-MCAO) surgery, with age- and sex-matched wild-type and sham-operated controls. Cognitive assessments included the Barnes maze, and novel object recognition test (NORT). Respiratory metrics were quantified using whole-body plethysmography, while immunohistochemistry measured Aβ deposition in the hippocampus and cortex, astrocytic markers (C3⁺GFAP⁺ for A1; S100A10⁺GFAP⁺ for A2) in the retrotrapezoid nucleus (RTN), and lymphatic vessel area (LYVE1) in deep cervical lymph nodes (dCLNs). Aβ in cerebrospinal fluid was also assessed. CAA mice without stroke exhibited higher apnea rates and impaired cognitive performance compared to wild-type controls. Stroke further increased apnea events and worsened Barnes maze escape latencies in CAA mice. Molecular analysis revealed an increase in GFAP as well as in A1 astrocytes and a reduction in A2 astrocytes in the RTN following stroke. Additionally, stroke accelerated Aβ deposition in the hippocampus and cortex while reducing Aβ clearance via cerebrospinal fluid and dCLNs. These findings suggest that stroke exacerbates respiratory dysfunction, impairs glymphatic-lymphatic clearance, and accelerates cognitive decline in CAA mice. Targeting post-stroke respiratory dysfunction may offer therapeutic potential for mitigating ischemic damage in dementia patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging and Disease
Aging and Disease GERIATRICS & GERONTOLOGY-
CiteScore
14.60
自引率
2.70%
发文量
138
审稿时长
10 weeks
期刊介绍: Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信