Seong Hyun Park, Young Je Park, Seungsoo Jang, Pilyoung Lee, Soobin Yoon, Young-June Park, Chi-Young Jung, Kang Taek Lee
{"title":"超高孔隙率的三层多孔输运层在水电解中的氧输运和催化剂利用。","authors":"Seong Hyun Park, Young Je Park, Seungsoo Jang, Pilyoung Lee, Soobin Yoon, Young-June Park, Chi-Young Jung, Kang Taek Lee","doi":"10.1007/s40820-025-01831-z","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>A novel triple-layer Ti-porous transport layer (PTL), fabricated using a practical and scalable tape casting and roll calendering process, enhances catalyst utilization by increasing interfacial contact area and the triple-phase boundary.</p>\n </li>\n <li>\n <p>The ultra-high porosity (75%) backing layer and graded structure maximize oxygen transport, mitigate oxygen accumulation, and improve reactant accessibility.</p>\n </li>\n <li>\n <p>Electrochemical evaluations demonstrate a 127 mV reduction in voltage at 2 A cm<sup>−2</sup> compared to a commercial PTL, accelerating proton exchange membrane water electrolysis commercialization and supporting the transition to sustainable energy.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Triple-Layer Porous Transport Layers with Ultra-High Porosity for Enhanced Oxygen Transport and Catalyst Utilization in Water Electrolysis\",\"authors\":\"Seong Hyun Park, Young Je Park, Seungsoo Jang, Pilyoung Lee, Soobin Yoon, Young-June Park, Chi-Young Jung, Kang Taek Lee\",\"doi\":\"10.1007/s40820-025-01831-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>A novel triple-layer Ti-porous transport layer (PTL), fabricated using a practical and scalable tape casting and roll calendering process, enhances catalyst utilization by increasing interfacial contact area and the triple-phase boundary.</p>\\n </li>\\n <li>\\n <p>The ultra-high porosity (75%) backing layer and graded structure maximize oxygen transport, mitigate oxygen accumulation, and improve reactant accessibility.</p>\\n </li>\\n <li>\\n <p>Electrochemical evaluations demonstrate a 127 mV reduction in voltage at 2 A cm<sup>−2</sup> compared to a commercial PTL, accelerating proton exchange membrane water electrolysis commercialization and supporting the transition to sustainable energy.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01831-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01831-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
绿色制氢的质子交换膜水电解(PEMWE)的商业化取决于低成本、高性能钛多孔传输层(PTLs)的发展。本研究介绍了一种三层Ti-PTL,该Ti-PTL具有梯度多孔结构和75%超高孔隙率的背衬层,通过带式铸造和轧辊压延制成。这种三层PTL由微孔层、中间层和高孔底层组成,提高了催化剂的利用率、机械完整性和质量传输。使用x射线的数字孪生技术显示,与催化剂层界面的接触面积和三相边界增加,显着改善了析氧反应动力学。数值模拟表明,精心设计的三层PTL多孔结构有助于有效的氧气输送,减轻氧气积累,提高反应物的可及性。电化学评估表明,与商业PTL相比,PEMWE的性能得到了改善,在2 A cm-2的电压下降低了127 mV,突出了其提高PEMWE效率和成本效益的潜力。
Triple-Layer Porous Transport Layers with Ultra-High Porosity for Enhanced Oxygen Transport and Catalyst Utilization in Water Electrolysis
Highlights
A novel triple-layer Ti-porous transport layer (PTL), fabricated using a practical and scalable tape casting and roll calendering process, enhances catalyst utilization by increasing interfacial contact area and the triple-phase boundary.
The ultra-high porosity (75%) backing layer and graded structure maximize oxygen transport, mitigate oxygen accumulation, and improve reactant accessibility.
Electrochemical evaluations demonstrate a 127 mV reduction in voltage at 2 A cm−2 compared to a commercial PTL, accelerating proton exchange membrane water electrolysis commercialization and supporting the transition to sustainable energy.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.