{"title":"揭示Fe-N4活性位点上共价键碳基质的调制以增强漆酶样活性:迈向酚类污染物的高级检测和降解。","authors":"Guo-Qi Zhang, Xia Long, Yu-Han Shi, Wei Wu, Xin-Yue Zhou, Wen-Cai Jiang, Tian-Qi Li, Wen-Jing Xiang, Wei-Ping Liu, Yan Zhao","doi":"10.1007/s00604-025-07314-7","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we present a proof-of-concept investigation into the assessment of the laccase-like activity of covalently bonded carbon environments connected to Fe-N<sub>4</sub> sites, using the closed π conjugated phthalocyanine-based intrinsic covalent organic polymers (COP) with well-designed structures. Based on the theoretical prediction and experimental implementation, the impact of the covalent-bonded carbon matrix on the laccase-like activity of COP-X (X represents the degree of conjugation) was systematically investigated. Further calculation results by density functional theory showed that the strongest laccase-like catalytic activity of COP-2 may be due to the facile desorption of catalytic intermediates, and the laccase-like catalytic mechanism of COP-2 nanozymes was also deeply understood. As anticipated, the utilization of COP-2 nanozymes with laccase-like activity enabled the achievement of excellent sensitivity for monitoring epinephrine in human serum. In addition, the COP-2 nanozymes also facilitate the detection and degradation of phenolic pollutants present in the environment. This finding presents a novel perspective for the rational design of high-performance laccase-like iron based nanozymes, and also lays the foundation for clarifying the origin of the laccase-like activity of nanozymes.</p>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 7","pages":"464"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the modulation of covalently bonded carbon matrix on Fe-N<sub>4</sub> active sites for enhanced laccase-like activity: toward advanced detection and degradation of phenolic pollutants.\",\"authors\":\"Guo-Qi Zhang, Xia Long, Yu-Han Shi, Wei Wu, Xin-Yue Zhou, Wen-Cai Jiang, Tian-Qi Li, Wen-Jing Xiang, Wei-Ping Liu, Yan Zhao\",\"doi\":\"10.1007/s00604-025-07314-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, we present a proof-of-concept investigation into the assessment of the laccase-like activity of covalently bonded carbon environments connected to Fe-N<sub>4</sub> sites, using the closed π conjugated phthalocyanine-based intrinsic covalent organic polymers (COP) with well-designed structures. Based on the theoretical prediction and experimental implementation, the impact of the covalent-bonded carbon matrix on the laccase-like activity of COP-X (X represents the degree of conjugation) was systematically investigated. Further calculation results by density functional theory showed that the strongest laccase-like catalytic activity of COP-2 may be due to the facile desorption of catalytic intermediates, and the laccase-like catalytic mechanism of COP-2 nanozymes was also deeply understood. As anticipated, the utilization of COP-2 nanozymes with laccase-like activity enabled the achievement of excellent sensitivity for monitoring epinephrine in human serum. In addition, the COP-2 nanozymes also facilitate the detection and degradation of phenolic pollutants present in the environment. This finding presents a novel perspective for the rational design of high-performance laccase-like iron based nanozymes, and also lays the foundation for clarifying the origin of the laccase-like activity of nanozymes.</p>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 7\",\"pages\":\"464\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00604-025-07314-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00604-025-07314-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Unraveling the modulation of covalently bonded carbon matrix on Fe-N4 active sites for enhanced laccase-like activity: toward advanced detection and degradation of phenolic pollutants.
Herein, we present a proof-of-concept investigation into the assessment of the laccase-like activity of covalently bonded carbon environments connected to Fe-N4 sites, using the closed π conjugated phthalocyanine-based intrinsic covalent organic polymers (COP) with well-designed structures. Based on the theoretical prediction and experimental implementation, the impact of the covalent-bonded carbon matrix on the laccase-like activity of COP-X (X represents the degree of conjugation) was systematically investigated. Further calculation results by density functional theory showed that the strongest laccase-like catalytic activity of COP-2 may be due to the facile desorption of catalytic intermediates, and the laccase-like catalytic mechanism of COP-2 nanozymes was also deeply understood. As anticipated, the utilization of COP-2 nanozymes with laccase-like activity enabled the achievement of excellent sensitivity for monitoring epinephrine in human serum. In addition, the COP-2 nanozymes also facilitate the detection and degradation of phenolic pollutants present in the environment. This finding presents a novel perspective for the rational design of high-performance laccase-like iron based nanozymes, and also lays the foundation for clarifying the origin of the laccase-like activity of nanozymes.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.