用二维g-C3N5作为电子传输层修饰ZnO制备高性能稳定的有机太阳能电池。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-30 DOI:10.1002/cssc.202500889
Song Yang, Shengwei Shi, Huangzhong Yu
{"title":"用二维g-C3N5作为电子传输层修饰ZnO制备高性能稳定的有机太阳能电池。","authors":"Song Yang, Shengwei Shi, Huangzhong Yu","doi":"10.1002/cssc.202500889","DOIUrl":null,"url":null,"abstract":"<p><p>ZnO has been traditionally applied in organic solar cells (OSCs) as electron transport layer (ETL). However, inevitable vacancy defects existed on the surface of ZnO will result in trap-assisted recombination centers and thus low efficient electron transport in OSCs. Herein, an effective and facile method has been developed to modify the ZnO surface with two-dimensional (2D) g-C3N5 for high-performance and stable OSCs. The results show that 2D g-C3N5 can effectively passivate various defects on the surface of ZnO, such as oxygen vacancies and -OH, leading to the reduction of the work function of ZnO layer. The combination of theoretical calculations and experimental characterizations reveals charge transfer mechanism between g-C3N5 and ZnO surface and physical mechanism of oxygen vacancy filling in ZnO. Furthermore, with 1 wt% g-C3N5-modified ZnO as the ETL, inverted OSCs based on PM6: BTP-eC9 and PM6:L8-BO:BTP-eC9 exhibit the highest power conversion efficiency (PCE) of 18.15% and 18.84%, respectively, which is much higher than that for the corresponding reference devices without the modified ETL (16.37% and 17.63%). Therefore, this study provides an effective and facile way for the defect modification of ZnO by 2D materials, and offers a deep understanding of the passivation mechanism of ZnO defects.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500889"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The modification of ZnO with 2D g-C3N5 as electron transport layer for high-performance and stable organic solar cells.\",\"authors\":\"Song Yang, Shengwei Shi, Huangzhong Yu\",\"doi\":\"10.1002/cssc.202500889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ZnO has been traditionally applied in organic solar cells (OSCs) as electron transport layer (ETL). However, inevitable vacancy defects existed on the surface of ZnO will result in trap-assisted recombination centers and thus low efficient electron transport in OSCs. Herein, an effective and facile method has been developed to modify the ZnO surface with two-dimensional (2D) g-C3N5 for high-performance and stable OSCs. The results show that 2D g-C3N5 can effectively passivate various defects on the surface of ZnO, such as oxygen vacancies and -OH, leading to the reduction of the work function of ZnO layer. The combination of theoretical calculations and experimental characterizations reveals charge transfer mechanism between g-C3N5 and ZnO surface and physical mechanism of oxygen vacancy filling in ZnO. Furthermore, with 1 wt% g-C3N5-modified ZnO as the ETL, inverted OSCs based on PM6: BTP-eC9 and PM6:L8-BO:BTP-eC9 exhibit the highest power conversion efficiency (PCE) of 18.15% and 18.84%, respectively, which is much higher than that for the corresponding reference devices without the modified ETL (16.37% and 17.63%). Therefore, this study provides an effective and facile way for the defect modification of ZnO by 2D materials, and offers a deep understanding of the passivation mechanism of ZnO defects.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500889\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500889\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500889","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统上,ZnO作为电子传输层应用于有机太阳能电池(OSCs)中。然而,ZnO表面存在不可避免的空位缺陷会导致陷阱辅助复合中心的形成,从而导致OSCs中电子传递效率低下。本文提出了一种简单有效的方法,利用二维g-C3N5修饰ZnO表面,制备高性能稳定的OSCs。结果表明:2D g-C3N5能有效钝化ZnO表面的各种缺陷,如氧空位和-OH,导致ZnO层的功函数降低;理论计算与实验表征相结合,揭示了g-C3N5与ZnO表面的电荷转移机理和氧化锌中氧空位填充的物理机制。此外,以1 wt% g- c3n5修饰ZnO为ETL时,基于PM6: BTP-eC9和PM6:L8-BO:BTP-eC9的倒转OSCs的功率转换效率(PCE)最高,分别为18.15%和18.84%,远高于未修饰ETL的相应参考器件(16.37%和17.63%)。因此,本研究为利用二维材料对ZnO缺陷进行改性提供了一种有效而简便的方法,并对ZnO缺陷的钝化机理有了深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The modification of ZnO with 2D g-C3N5 as electron transport layer for high-performance and stable organic solar cells.

ZnO has been traditionally applied in organic solar cells (OSCs) as electron transport layer (ETL). However, inevitable vacancy defects existed on the surface of ZnO will result in trap-assisted recombination centers and thus low efficient electron transport in OSCs. Herein, an effective and facile method has been developed to modify the ZnO surface with two-dimensional (2D) g-C3N5 for high-performance and stable OSCs. The results show that 2D g-C3N5 can effectively passivate various defects on the surface of ZnO, such as oxygen vacancies and -OH, leading to the reduction of the work function of ZnO layer. The combination of theoretical calculations and experimental characterizations reveals charge transfer mechanism between g-C3N5 and ZnO surface and physical mechanism of oxygen vacancy filling in ZnO. Furthermore, with 1 wt% g-C3N5-modified ZnO as the ETL, inverted OSCs based on PM6: BTP-eC9 and PM6:L8-BO:BTP-eC9 exhibit the highest power conversion efficiency (PCE) of 18.15% and 18.84%, respectively, which is much higher than that for the corresponding reference devices without the modified ETL (16.37% and 17.63%). Therefore, this study provides an effective and facile way for the defect modification of ZnO by 2D materials, and offers a deep understanding of the passivation mechanism of ZnO defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信