具有介孔通道的生物启发Fe/Mn双原子催化剂用于快速多硫氧化还原动力学和稳定的锂硫电池。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-29 DOI:10.1002/cssc.202500730
Xing Chen, Kun Liu, Pengxiang Wang, Xiangyu Huai, Xiang Wang, Zhenyang Zhao, Rui Yan, Shuang Li
{"title":"具有介孔通道的生物启发Fe/Mn双原子催化剂用于快速多硫氧化还原动力学和稳定的锂硫电池。","authors":"Xing Chen, Kun Liu, Pengxiang Wang, Xiangyu Huai, Xiang Wang, Zhenyang Zhao, Rui Yan, Shuang Li","doi":"10.1002/cssc.202500730","DOIUrl":null,"url":null,"abstract":"<p><p>The sluggish sulfur redox kinetics and severe polysulfide shuttling significantly hinder the practical performance of lithium-sulfur batteries (LSBs). While single-atom catalysts (SACs) have shown promise in capturing and catalyzing sulfur species, their catalytic activity still requires further enhancement for real-world applications. Inspired by natural superoxide dismutase, which utilizes dual-atom catalytic sites and a synergistic mechanism for rapid substrate conversion, we developed a bioinspired Fe/Mn dual-atom catalyst (FeMn-DAC) anchored on nanochannel-decorated carbon to improve sulfur redox kinetics and enable high-performance LSBs. Experimental results reveal that LSBs equipped with FeMn-DACs electrocatalyst exhibit the fastest nucleation (369.3 mAh g-1) and dissolution (226.3 mAh g-1) kinetics of Li2S. The battery demonstrates outstanding rate performance, delivering a reversible capacity of 670 mAh g-1 at 2.0 C, coupled with an ultralow capacity decay rate of 0.09% over 500 cycles. Even under high sulfur loadings of 2.79 mg cm-2 and 3.67 mg cm-2, the FeMn-DACs-based cathodes achieve excellent area capacities of 2.06 mAh cm-2 and 2.69 mAh cm-2, respectively. This work provides a new perspective for designing advanced dual-atom catalysts tailored for LSBs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500730"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Fe/Mn Dual-Atom Catalysts with Mesoporous Channels for Rapid Polysulfide Redox Kinetics and Stable Lithium-Sulfur Batteries.\",\"authors\":\"Xing Chen, Kun Liu, Pengxiang Wang, Xiangyu Huai, Xiang Wang, Zhenyang Zhao, Rui Yan, Shuang Li\",\"doi\":\"10.1002/cssc.202500730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sluggish sulfur redox kinetics and severe polysulfide shuttling significantly hinder the practical performance of lithium-sulfur batteries (LSBs). While single-atom catalysts (SACs) have shown promise in capturing and catalyzing sulfur species, their catalytic activity still requires further enhancement for real-world applications. Inspired by natural superoxide dismutase, which utilizes dual-atom catalytic sites and a synergistic mechanism for rapid substrate conversion, we developed a bioinspired Fe/Mn dual-atom catalyst (FeMn-DAC) anchored on nanochannel-decorated carbon to improve sulfur redox kinetics and enable high-performance LSBs. Experimental results reveal that LSBs equipped with FeMn-DACs electrocatalyst exhibit the fastest nucleation (369.3 mAh g-1) and dissolution (226.3 mAh g-1) kinetics of Li2S. The battery demonstrates outstanding rate performance, delivering a reversible capacity of 670 mAh g-1 at 2.0 C, coupled with an ultralow capacity decay rate of 0.09% over 500 cycles. Even under high sulfur loadings of 2.79 mg cm-2 and 3.67 mg cm-2, the FeMn-DACs-based cathodes achieve excellent area capacities of 2.06 mAh cm-2 and 2.69 mAh cm-2, respectively. This work provides a new perspective for designing advanced dual-atom catalysts tailored for LSBs.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500730\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500730\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500730","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硫氧化还原动力学迟缓和多硫化物穿梭严重影响了锂硫电池的实际性能。虽然单原子催化剂(SACs)在捕获和催化硫方面表现出了很大的希望,但它们的催化活性仍需要进一步提高才能在实际应用中得到应用。受天然超氧化物歧化酶(利用双原子催化位点和协同机制快速转化底物)的启发,我们开发了一种生物启发的Fe/Mn双原子催化剂(FeMn-DAC),锚定在纳米通道修饰的碳上,以改善硫氧化还原动力学并实现高性能的lbs。实验结果表明,配备femn - dac电催化剂的LSBs具有最快的Li2S成核动力学(369.3 mAh g-1)和溶解动力学(226.3 mAh g-1)。该电池具有出色的倍率性能,在2.0℃下提供670 mAh g-1的可逆容量,并且在500次循环中具有0.09%的超低容量衰减率。即使在2.79 mg cm-2和3.67 mg cm-2的高硫负荷下,基于femn - dac的阴极也分别获得了2.06 mAh cm-2和2.69 mAh cm-2的优异面积容量。这项工作为设计适合lsb的先进双原子催化剂提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinspired Fe/Mn Dual-Atom Catalysts with Mesoporous Channels for Rapid Polysulfide Redox Kinetics and Stable Lithium-Sulfur Batteries.

The sluggish sulfur redox kinetics and severe polysulfide shuttling significantly hinder the practical performance of lithium-sulfur batteries (LSBs). While single-atom catalysts (SACs) have shown promise in capturing and catalyzing sulfur species, their catalytic activity still requires further enhancement for real-world applications. Inspired by natural superoxide dismutase, which utilizes dual-atom catalytic sites and a synergistic mechanism for rapid substrate conversion, we developed a bioinspired Fe/Mn dual-atom catalyst (FeMn-DAC) anchored on nanochannel-decorated carbon to improve sulfur redox kinetics and enable high-performance LSBs. Experimental results reveal that LSBs equipped with FeMn-DACs electrocatalyst exhibit the fastest nucleation (369.3 mAh g-1) and dissolution (226.3 mAh g-1) kinetics of Li2S. The battery demonstrates outstanding rate performance, delivering a reversible capacity of 670 mAh g-1 at 2.0 C, coupled with an ultralow capacity decay rate of 0.09% over 500 cycles. Even under high sulfur loadings of 2.79 mg cm-2 and 3.67 mg cm-2, the FeMn-DACs-based cathodes achieve excellent area capacities of 2.06 mAh cm-2 and 2.69 mAh cm-2, respectively. This work provides a new perspective for designing advanced dual-atom catalysts tailored for LSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信