具有离子可调谐双极性的超薄膜小分子混合导体,用于高性能有机电化学晶体管和多值逻辑逆变器。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liuyuan Lan, Yiming Wang, Xiuyuan Zhu, Iain McCulloch, Wan Yue
{"title":"具有离子可调谐双极性的超薄膜小分子混合导体,用于高性能有机电化学晶体管和多值逻辑逆变器。","authors":"Liuyuan Lan, Yiming Wang, Xiuyuan Zhu, Iain McCulloch, Wan Yue","doi":"10.1002/adma.202501041","DOIUrl":null,"url":null,"abstract":"<p><p>Single-component, ultrathin ambipolar organic electrochemical transistors (OECTs) combined with multivalued logic (MVL) circuits offer new opportunities for advancing next-generation bioelectronic systems due to their low-power consumption, manufacturing simplicity, and high-density integration, central to which is the evolution of ambipolar organic mixed ionic-electronic conductors (OMIECs) as channel materials. However, small-molecule analogues remain unexplored to date for lack of well-defined molecular strategies. Herein, first two acceptor-donor-acceptor-donor-acceptor-type vinyl-linked bis-diketopyrrolopyrrole-core ambipolar small-molecule OMIECs are developed featuring multiple conformational locks. It is discovered that grafting shortened glycolated sidechains produces stronger solid-state aggregation, tighter lamellar stacking, and higher crystallinity, consequently elevating the ambipolar µC* figure-of-merit by over fourfold. Furthermore, the skillful manipulation of anionic species to facilitate oxidation doping enables significant increasement in p-type µC* (170 F cm<sup>-1</sup> V<sup>-1</sup> s<sup>-1</sup>) and a record-high n-type µC* of 360 F cm<sup>-1</sup> V<sup>-1</sup> s<sup>-1</sup>, especially at a channel thickness of sub-10 nm. Crucially, single-component OECT-based inverters constructed therefrom are for the first time demonstrated to accommodate ternary/quaternary logic, achieving a remarkable gain of 135 V/V. This work not only provides an effective molecular design strategy for creating high-performing ultrathin-film ambipolar small-molecule OMIECs, highlighting ionic doping effect on ambipolarity, but also demonstrates their potential in MVL circuits for organic bioelectronics applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2501041"},"PeriodicalIF":26.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin-Film Small Molecule Mixed Conductors Exhibiting Ion-Tunable Ambipolarity for High-Performance Organic Electrochemical Transistors and Multivalued Logic Inverters.\",\"authors\":\"Liuyuan Lan, Yiming Wang, Xiuyuan Zhu, Iain McCulloch, Wan Yue\",\"doi\":\"10.1002/adma.202501041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-component, ultrathin ambipolar organic electrochemical transistors (OECTs) combined with multivalued logic (MVL) circuits offer new opportunities for advancing next-generation bioelectronic systems due to their low-power consumption, manufacturing simplicity, and high-density integration, central to which is the evolution of ambipolar organic mixed ionic-electronic conductors (OMIECs) as channel materials. However, small-molecule analogues remain unexplored to date for lack of well-defined molecular strategies. Herein, first two acceptor-donor-acceptor-donor-acceptor-type vinyl-linked bis-diketopyrrolopyrrole-core ambipolar small-molecule OMIECs are developed featuring multiple conformational locks. It is discovered that grafting shortened glycolated sidechains produces stronger solid-state aggregation, tighter lamellar stacking, and higher crystallinity, consequently elevating the ambipolar µC* figure-of-merit by over fourfold. Furthermore, the skillful manipulation of anionic species to facilitate oxidation doping enables significant increasement in p-type µC* (170 F cm<sup>-1</sup> V<sup>-1</sup> s<sup>-1</sup>) and a record-high n-type µC* of 360 F cm<sup>-1</sup> V<sup>-1</sup> s<sup>-1</sup>, especially at a channel thickness of sub-10 nm. Crucially, single-component OECT-based inverters constructed therefrom are for the first time demonstrated to accommodate ternary/quaternary logic, achieving a remarkable gain of 135 V/V. This work not only provides an effective molecular design strategy for creating high-performing ultrathin-film ambipolar small-molecule OMIECs, highlighting ionic doping effect on ambipolarity, but also demonstrates their potential in MVL circuits for organic bioelectronics applications.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2501041\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202501041\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202501041","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单组分、超薄双极性有机电化学晶体管(OECTs)与多值逻辑(MVL)电路相结合,由于其低功耗、制造简单和高密度集成,为推进下一代生物电子系统提供了新的机会,其核心是双极性有机混合离子电子导体(OMIECs)作为通道材料的发展。然而,由于缺乏明确的分子策略,小分子类似物至今仍未被探索。本文首先开发了具有多重构象锁的两种受体-供体-受体-供体-受体型乙烯链双酮吡咯-核双极性小分子omiec。研究发现,接枝缩短的糖化侧链可以产生更强的固态聚集,更紧密的层状堆叠和更高的结晶度,从而将双极性μ C*的优点系数提高了四倍以上。此外,巧妙地操纵阴离子物质以促进氧化掺杂,可以显著增加p型µC* (170 F cm-1 V-1 s-1)和创纪录的360 F cm-1 V-1 s-1 n型µC*,特别是在通道厚度低于10 nm的情况下。至关重要的是,由此构建的基于oect的单组件逆变器首次证明可以适应三元/四元逻辑,实现了135 V/V的显着增益。这项工作不仅为创建高性能的超薄膜双极性小分子omiec提供了有效的分子设计策略,突出了离子掺杂对双极性的影响,而且展示了它们在有机生物电子学的MVL电路中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrathin-Film Small Molecule Mixed Conductors Exhibiting Ion-Tunable Ambipolarity for High-Performance Organic Electrochemical Transistors and Multivalued Logic Inverters.

Single-component, ultrathin ambipolar organic electrochemical transistors (OECTs) combined with multivalued logic (MVL) circuits offer new opportunities for advancing next-generation bioelectronic systems due to their low-power consumption, manufacturing simplicity, and high-density integration, central to which is the evolution of ambipolar organic mixed ionic-electronic conductors (OMIECs) as channel materials. However, small-molecule analogues remain unexplored to date for lack of well-defined molecular strategies. Herein, first two acceptor-donor-acceptor-donor-acceptor-type vinyl-linked bis-diketopyrrolopyrrole-core ambipolar small-molecule OMIECs are developed featuring multiple conformational locks. It is discovered that grafting shortened glycolated sidechains produces stronger solid-state aggregation, tighter lamellar stacking, and higher crystallinity, consequently elevating the ambipolar µC* figure-of-merit by over fourfold. Furthermore, the skillful manipulation of anionic species to facilitate oxidation doping enables significant increasement in p-type µC* (170 F cm-1 V-1 s-1) and a record-high n-type µC* of 360 F cm-1 V-1 s-1, especially at a channel thickness of sub-10 nm. Crucially, single-component OECT-based inverters constructed therefrom are for the first time demonstrated to accommodate ternary/quaternary logic, achieving a remarkable gain of 135 V/V. This work not only provides an effective molecular design strategy for creating high-performing ultrathin-film ambipolar small-molecule OMIECs, highlighting ionic doping effect on ambipolarity, but also demonstrates their potential in MVL circuits for organic bioelectronics applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信