范德华铁磁体中室温应变诱导稳健斯基米子晶格。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinyi Zhou, Iftikhar Ahmed Malik, Ruihuan Duan, Hanqing Shi, Chen Liu, Yan Luo, Yue Sun, Ruixi Chen, Yilin Liu, Shian Xia, Vanessa Li Zhang, Sheng Liu, Chao Zhu, Xixiang Zhang, Yi Du, Zheng Liu, Ting Yu
{"title":"范德华铁磁体中室温应变诱导稳健斯基米子晶格。","authors":"Xinyi Zhou, Iftikhar Ahmed Malik, Ruihuan Duan, Hanqing Shi, Chen Liu, Yan Luo, Yue Sun, Ruixi Chen, Yilin Liu, Shian Xia, Vanessa Li Zhang, Sheng Liu, Chao Zhu, Xixiang Zhang, Yi Du, Zheng Liu, Ting Yu","doi":"10.1002/adma.202505977","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulating topological magnetic orders of 2D magnets by strain, once achieved, offers enormous potential for future low-power flexible spintronic applications. In this work, by placing Fe<sub>3</sub>GaTe<sub>2</sub> (FGaT), a room-temperature 2D ferromagnet, on flexible substrate, a field-free and robust formation of skyrmion lattice induced by strain is demonstrated. By applying a minimal strain of ≈0.80% to pre-annealed FGaT flakes, the Magnetic Force Microscopy (MFM) tip directly triggers the transition from maze-like domains to an ordered skyrmion lattice while scanning the sample surface. The skyrmion lattice is rather stable against extensive cyclic mechanical testing (stretching, bending, and twisting over 2000 cycles each). It also exhibits stability across a wide range of magnetic fields (≈2.9 kOe) and temperatures (≈323 K), as well as long-term retention stability, highlighting its robustness and field-free stabilization. The strain effect reduces the lattice symmetry and enhances the Dzyaloshinskii-Moriya interaction (DMI) of FGaT, thus stabilizing the skyrmion lattice. The findings highlight the potential of FGaT for integrating magnetic skyrmions into future low-power-consumption flexible spintronics devices.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2505977"},"PeriodicalIF":26.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-Induced Robust Skyrmion Lattice at Room Temperature in van der Waals Ferromagnet.\",\"authors\":\"Xinyi Zhou, Iftikhar Ahmed Malik, Ruihuan Duan, Hanqing Shi, Chen Liu, Yan Luo, Yue Sun, Ruixi Chen, Yilin Liu, Shian Xia, Vanessa Li Zhang, Sheng Liu, Chao Zhu, Xixiang Zhang, Yi Du, Zheng Liu, Ting Yu\",\"doi\":\"10.1002/adma.202505977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Manipulating topological magnetic orders of 2D magnets by strain, once achieved, offers enormous potential for future low-power flexible spintronic applications. In this work, by placing Fe<sub>3</sub>GaTe<sub>2</sub> (FGaT), a room-temperature 2D ferromagnet, on flexible substrate, a field-free and robust formation of skyrmion lattice induced by strain is demonstrated. By applying a minimal strain of ≈0.80% to pre-annealed FGaT flakes, the Magnetic Force Microscopy (MFM) tip directly triggers the transition from maze-like domains to an ordered skyrmion lattice while scanning the sample surface. The skyrmion lattice is rather stable against extensive cyclic mechanical testing (stretching, bending, and twisting over 2000 cycles each). It also exhibits stability across a wide range of magnetic fields (≈2.9 kOe) and temperatures (≈323 K), as well as long-term retention stability, highlighting its robustness and field-free stabilization. The strain effect reduces the lattice symmetry and enhances the Dzyaloshinskii-Moriya interaction (DMI) of FGaT, thus stabilizing the skyrmion lattice. The findings highlight the potential of FGaT for integrating magnetic skyrmions into future low-power-consumption flexible spintronics devices.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2505977\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202505977\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202505977","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过应变操纵二维磁体的拓扑磁序,一旦实现,将为未来的低功率柔性自旋电子应用提供巨大的潜力。在这项工作中,通过将Fe3GaTe2 (FGaT),一种室温二维铁磁体,放置在柔性衬底上,证明了应变诱导的无场和鲁棒的skyrmion晶格形成。通过对预退火的FGaT薄片施加≈0.80%的最小应变,磁力显微镜(MFM)尖端在扫描样品表面时直接触发从迷宫状畴到有序斯基米子晶格的转变。skyrmion晶格在广泛的循环机械测试(拉伸、弯曲和扭曲每个循环超过2000次)中相当稳定。它还表现出在大范围的磁场(≈2.9 kOe)和温度(≈323 K)下的稳定性,以及长期保持稳定性,突出了其鲁棒性和无场稳定性。应变效应降低了晶格对称性,增强了FGaT的Dzyaloshinskii-Moriya相互作用(DMI),从而稳定了skyrmion晶格。这一发现突出了FGaT将磁性微粒集成到未来低功耗柔性自旋电子学器件中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain-Induced Robust Skyrmion Lattice at Room Temperature in van der Waals Ferromagnet.

Manipulating topological magnetic orders of 2D magnets by strain, once achieved, offers enormous potential for future low-power flexible spintronic applications. In this work, by placing Fe3GaTe2 (FGaT), a room-temperature 2D ferromagnet, on flexible substrate, a field-free and robust formation of skyrmion lattice induced by strain is demonstrated. By applying a minimal strain of ≈0.80% to pre-annealed FGaT flakes, the Magnetic Force Microscopy (MFM) tip directly triggers the transition from maze-like domains to an ordered skyrmion lattice while scanning the sample surface. The skyrmion lattice is rather stable against extensive cyclic mechanical testing (stretching, bending, and twisting over 2000 cycles each). It also exhibits stability across a wide range of magnetic fields (≈2.9 kOe) and temperatures (≈323 K), as well as long-term retention stability, highlighting its robustness and field-free stabilization. The strain effect reduces the lattice symmetry and enhances the Dzyaloshinskii-Moriya interaction (DMI) of FGaT, thus stabilizing the skyrmion lattice. The findings highlight the potential of FGaT for integrating magnetic skyrmions into future low-power-consumption flexible spintronics devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信