硅基阳极可逆纳米晶相变实现稳定的全固态电池。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuefeng Shen, Yihe Wang, Zirui Jiang, Xiaoning Liang, Marija Demicoli, Luciano Mule Stagno, Baoyu Sun, Huanli Sun, Xuechun Hao, Pengfei Zhang, Zhilu Wang, Junkai Deng, Jiantao Wang and Jiangxuan Song*, 
{"title":"硅基阳极可逆纳米晶相变实现稳定的全固态电池。","authors":"Xuefeng Shen,&nbsp;Yihe Wang,&nbsp;Zirui Jiang,&nbsp;Xiaoning Liang,&nbsp;Marija Demicoli,&nbsp;Luciano Mule Stagno,&nbsp;Baoyu Sun,&nbsp;Huanli Sun,&nbsp;Xuechun Hao,&nbsp;Pengfei Zhang,&nbsp;Zhilu Wang,&nbsp;Junkai Deng,&nbsp;Jiantao Wang and Jiangxuan Song*,&nbsp;","doi":"10.1021/acs.nanolett.5c02142","DOIUrl":null,"url":null,"abstract":"<p >Sulfide-based all-solid-state batteries employing Si anodes hold great promise for achieving high safety and energy density. However, the severe structural degradation of Si during cycling and its sluggish reaction kinetics lead to rapid capacity decay, significantly limiting battery lifespan. Herein, we propose a reversible nanocrystalline-phase transformation strategy by incorporating phosphate (P) and zinc (Zn) into a Si matrix to develop a high-capacity and stable Si-based anode. The anodes are electrochemically driven and converted <i>in situ</i> into Li<sub>15</sub>Si<sub>4</sub>, LiZn, and Li<sub>3</sub>P nanocrystalline phases during cycling, which mitigated the expansion stress of the electrode, maintaining its structural stability. Meanwhile, Zn and P reduced the Li-ion diffusion energy barrier and band gap of Si, improving the ion/electron transport ability within the electrode. The NCM90-based full cell incorporating this anode demonstrates stable operation for over 3,000 cycles at 2C rate. This alloy-based anode design offers an effective pathway for developing long-cycle-life all-solid-state batteries.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 27","pages":"10826–10833"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible Nano Crystalline-Phase Transformation in Si-Based Anode Enables Stable All-Solid-State Batteries\",\"authors\":\"Xuefeng Shen,&nbsp;Yihe Wang,&nbsp;Zirui Jiang,&nbsp;Xiaoning Liang,&nbsp;Marija Demicoli,&nbsp;Luciano Mule Stagno,&nbsp;Baoyu Sun,&nbsp;Huanli Sun,&nbsp;Xuechun Hao,&nbsp;Pengfei Zhang,&nbsp;Zhilu Wang,&nbsp;Junkai Deng,&nbsp;Jiantao Wang and Jiangxuan Song*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c02142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sulfide-based all-solid-state batteries employing Si anodes hold great promise for achieving high safety and energy density. However, the severe structural degradation of Si during cycling and its sluggish reaction kinetics lead to rapid capacity decay, significantly limiting battery lifespan. Herein, we propose a reversible nanocrystalline-phase transformation strategy by incorporating phosphate (P) and zinc (Zn) into a Si matrix to develop a high-capacity and stable Si-based anode. The anodes are electrochemically driven and converted <i>in situ</i> into Li<sub>15</sub>Si<sub>4</sub>, LiZn, and Li<sub>3</sub>P nanocrystalline phases during cycling, which mitigated the expansion stress of the electrode, maintaining its structural stability. Meanwhile, Zn and P reduced the Li-ion diffusion energy barrier and band gap of Si, improving the ion/electron transport ability within the electrode. The NCM90-based full cell incorporating this anode demonstrates stable operation for over 3,000 cycles at 2C rate. This alloy-based anode design offers an effective pathway for developing long-cycle-life all-solid-state batteries.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 27\",\"pages\":\"10826–10833\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02142\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02142","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用硅阳极的硫化物基全固态电池有望实现高安全性和能量密度。然而,硅在循环过程中严重的结构降解及其缓慢的反应动力学导致容量快速衰减,极大地限制了电池的寿命。在此,我们提出了一种可逆的纳米晶相变策略,通过将磷酸盐(P)和锌(Zn)加入到Si基体中来开发高容量和稳定的Si基阳极。在循环过程中,阳极被电化学驱动并原位转化为Li15Si4、LiZn和Li3P纳米晶相,从而减轻了电极的膨胀应力,保持了其结构稳定性。同时,Zn和P降低了Si的li离子扩散能垒和带隙,提高了电极内离子/电子传递能力。采用这种阳极的基于ncm90的全电池在2C速率下稳定运行超过3000次。这种基于合金的阳极设计为开发长循环寿命全固态电池提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reversible Nano Crystalline-Phase Transformation in Si-Based Anode Enables Stable All-Solid-State Batteries

Reversible Nano Crystalline-Phase Transformation in Si-Based Anode Enables Stable All-Solid-State Batteries

Sulfide-based all-solid-state batteries employing Si anodes hold great promise for achieving high safety and energy density. However, the severe structural degradation of Si during cycling and its sluggish reaction kinetics lead to rapid capacity decay, significantly limiting battery lifespan. Herein, we propose a reversible nanocrystalline-phase transformation strategy by incorporating phosphate (P) and zinc (Zn) into a Si matrix to develop a high-capacity and stable Si-based anode. The anodes are electrochemically driven and converted in situ into Li15Si4, LiZn, and Li3P nanocrystalline phases during cycling, which mitigated the expansion stress of the electrode, maintaining its structural stability. Meanwhile, Zn and P reduced the Li-ion diffusion energy barrier and band gap of Si, improving the ion/electron transport ability within the electrode. The NCM90-based full cell incorporating this anode demonstrates stable operation for over 3,000 cycles at 2C rate. This alloy-based anode design offers an effective pathway for developing long-cycle-life all-solid-state batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信