用变分量子特征解算器估计当前量子硬件的基态能量:一个实用的研究。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-07-22 Epub Date: 2025-06-29 DOI:10.1021/acs.jctc.4c01657
Nacer Eddine Belaloui, Abdellah Tounsi, Abdelmouheymen Rabah Khamadja, Mohamed Messaoud Louamri, Achour Benslama, David E Bernal Neira, Mohamed Taha Rouabah
{"title":"用变分量子特征解算器估计当前量子硬件的基态能量:一个实用的研究。","authors":"Nacer Eddine Belaloui, Abdellah Tounsi, Abdelmouheymen Rabah Khamadja, Mohamed Messaoud Louamri, Achour Benslama, David E Bernal Neira, Mohamed Taha Rouabah","doi":"10.1021/acs.jctc.4c01657","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the variational quantum eigensolver (VQE) for estimating the ground-state energy of the BeH<sub>2</sub> molecule, emphasizing practical implementation and performance on current quantum hardware. Our research presents a comparative study of HEA and UCCSD ansätze on noiseless and noisy simulations and implements VQE on recent IBM quantum computer noise models and a real quantum computer, IBM Fez, providing a fully functional code employing Qiskit 1.2. Our experiments confirm UCCSD's reliability in ideal conditions, while the HEA demonstrates greater robustness to hardware noise, achieving chemical accuracy on state-vector simulation (SVS). The results reveal that achieving ground-state energy within chemical accuracy is feasible without error mitigation during VQE convergence. We demonstrate that current quantum devices effectively optimize circuit parameters despite misestimating simulated energies. The SVS-evaluated energies provide a more accurate representation of the solution quality compared to QPU-estimated energy values, indicating that VQE converges to the correct ground state despite quantum noise. Our study also applies noise mitigation as a postprocessing technique, using zero-noise extrapolation (ZNE) on a real quantum computer. The detailed methodologies presented in this study, including Hamiltonian construction and Fermionic-to-qubit transformations, facilitate flexible adaptation of the VQE approach for various algorithm variants and across different levels of algorithmic implementation.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"6777-6792"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ground-State Energy Estimation on Current Quantum Hardware through the Variational Quantum Eigensolver: A Practical Study.\",\"authors\":\"Nacer Eddine Belaloui, Abdellah Tounsi, Abdelmouheymen Rabah Khamadja, Mohamed Messaoud Louamri, Achour Benslama, David E Bernal Neira, Mohamed Taha Rouabah\",\"doi\":\"10.1021/acs.jctc.4c01657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the variational quantum eigensolver (VQE) for estimating the ground-state energy of the BeH<sub>2</sub> molecule, emphasizing practical implementation and performance on current quantum hardware. Our research presents a comparative study of HEA and UCCSD ansätze on noiseless and noisy simulations and implements VQE on recent IBM quantum computer noise models and a real quantum computer, IBM Fez, providing a fully functional code employing Qiskit 1.2. Our experiments confirm UCCSD's reliability in ideal conditions, while the HEA demonstrates greater robustness to hardware noise, achieving chemical accuracy on state-vector simulation (SVS). The results reveal that achieving ground-state energy within chemical accuracy is feasible without error mitigation during VQE convergence. We demonstrate that current quantum devices effectively optimize circuit parameters despite misestimating simulated energies. The SVS-evaluated energies provide a more accurate representation of the solution quality compared to QPU-estimated energy values, indicating that VQE converges to the correct ground state despite quantum noise. Our study also applies noise mitigation as a postprocessing technique, using zero-noise extrapolation (ZNE) on a real quantum computer. The detailed methodologies presented in this study, including Hamiltonian construction and Fermionic-to-qubit transformations, facilitate flexible adaptation of the VQE approach for various algorithm variants and across different levels of algorithmic implementation.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"6777-6792\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01657\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01657","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了用于估计BeH2分子基态能量的变分量子特征解算器(VQE),强调了在当前量子硬件上的实际实现和性能。我们的研究对HEA和UCCSD ansätze在无噪声和有噪声模拟方面进行了比较研究,并在最新的IBM量子计算机噪声模型和真实的量子计算机IBM Fez上实现了VQE,并提供了使用Qiskit 1.2的全功能代码。我们的实验证实了UCCSD在理想条件下的可靠性,而HEA对硬件噪声具有更强的鲁棒性,在状态向量模拟(SVS)中实现了化学精度。结果表明,在不降低VQE收敛误差的情况下,在化学精度范围内获得基态能量是可行的。我们证明了目前的量子器件有效地优化电路参数,尽管错误估计模拟能量。与qpu估计的能量值相比,svs评估的能量提供了更准确的溶液质量表示,表明尽管存在量子噪声,VQE仍收敛到正确的基态。我们的研究还将噪声缓解作为后处理技术,在真实的量子计算机上使用零噪声外推(ZNE)。本研究中提出的详细方法,包括哈密顿构造和费米子到量子位变换,促进了VQE方法对各种算法变体和不同级别算法实现的灵活适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground-State Energy Estimation on Current Quantum Hardware through the Variational Quantum Eigensolver: A Practical Study.

We investigate the variational quantum eigensolver (VQE) for estimating the ground-state energy of the BeH2 molecule, emphasizing practical implementation and performance on current quantum hardware. Our research presents a comparative study of HEA and UCCSD ansätze on noiseless and noisy simulations and implements VQE on recent IBM quantum computer noise models and a real quantum computer, IBM Fez, providing a fully functional code employing Qiskit 1.2. Our experiments confirm UCCSD's reliability in ideal conditions, while the HEA demonstrates greater robustness to hardware noise, achieving chemical accuracy on state-vector simulation (SVS). The results reveal that achieving ground-state energy within chemical accuracy is feasible without error mitigation during VQE convergence. We demonstrate that current quantum devices effectively optimize circuit parameters despite misestimating simulated energies. The SVS-evaluated energies provide a more accurate representation of the solution quality compared to QPU-estimated energy values, indicating that VQE converges to the correct ground state despite quantum noise. Our study also applies noise mitigation as a postprocessing technique, using zero-noise extrapolation (ZNE) on a real quantum computer. The detailed methodologies presented in this study, including Hamiltonian construction and Fermionic-to-qubit transformations, facilitate flexible adaptation of the VQE approach for various algorithm variants and across different levels of algorithmic implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信