Saeed Davoodi , Faridah Namata , Tomas Rosén , Stephan V. Roth , Michael Malkoch , L. Daniel Söderberg , Fredrik Lundell
{"title":"调谐对准,强度和韧性在功能性纤维素:Helux细丝:一个分子的权衡。","authors":"Saeed Davoodi , Faridah Namata , Tomas Rosén , Stephan V. Roth , Michael Malkoch , L. Daniel Söderberg , Fredrik Lundell","doi":"10.1021/acs.biomac.5c00128","DOIUrl":null,"url":null,"abstract":"<div><div>The complex architecture of wood motivates studies of bioinspired materials that combine strength, toughness, and mechanical integrity. We explore the interplay between nanofiber alignment and molecular interactions in composite filaments formed from cellulose nanofibers (CNFs) and a dendritic polyampholyte, Helux. Helux enhances strength by 60% and increases toughness 5-fold through ionic bonding and thermal covalent cross-linking. However, wide-angle X-ray scattering (WAXS) reveals reduced nanofiber alignment in Helux-containing samples, resulting in a 25% decrease in stiffnesshighlighting a trade-off between structural order and cohesion. Polarized optical microscopy (POM) and in situ small-angle X-ray scattering (SAXS) attribute this reduced alignment to enhanced rotary diffusion, driven by carboxylate groups of the Helux. With Helux, multivalent links across the nanofibers give a denser and tougher network with fewer voids. This behavior resembles lignin and hemicellulose interactions in wood, where flexibility and cohesion govern the performance.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (307KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 7","pages":"Pages 4133-4145"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Alignment, Strength, and Toughness in Functional Cellulose:Helux Filaments: A Molecular Trade-Off\",\"authors\":\"Saeed Davoodi , Faridah Namata , Tomas Rosén , Stephan V. Roth , Michael Malkoch , L. Daniel Söderberg , Fredrik Lundell\",\"doi\":\"10.1021/acs.biomac.5c00128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The complex architecture of wood motivates studies of bioinspired materials that combine strength, toughness, and mechanical integrity. We explore the interplay between nanofiber alignment and molecular interactions in composite filaments formed from cellulose nanofibers (CNFs) and a dendritic polyampholyte, Helux. Helux enhances strength by 60% and increases toughness 5-fold through ionic bonding and thermal covalent cross-linking. However, wide-angle X-ray scattering (WAXS) reveals reduced nanofiber alignment in Helux-containing samples, resulting in a 25% decrease in stiffnesshighlighting a trade-off between structural order and cohesion. Polarized optical microscopy (POM) and in situ small-angle X-ray scattering (SAXS) attribute this reduced alignment to enhanced rotary diffusion, driven by carboxylate groups of the Helux. With Helux, multivalent links across the nanofibers give a denser and tougher network with fewer voids. This behavior resembles lignin and hemicellulose interactions in wood, where flexibility and cohesion govern the performance.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (307KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 7\",\"pages\":\"Pages 4133-4145\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1525779725003058\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725003058","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tuning Alignment, Strength, and Toughness in Functional Cellulose:Helux Filaments: A Molecular Trade-Off
The complex architecture of wood motivates studies of bioinspired materials that combine strength, toughness, and mechanical integrity. We explore the interplay between nanofiber alignment and molecular interactions in composite filaments formed from cellulose nanofibers (CNFs) and a dendritic polyampholyte, Helux. Helux enhances strength by 60% and increases toughness 5-fold through ionic bonding and thermal covalent cross-linking. However, wide-angle X-ray scattering (WAXS) reveals reduced nanofiber alignment in Helux-containing samples, resulting in a 25% decrease in stiffnesshighlighting a trade-off between structural order and cohesion. Polarized optical microscopy (POM) and in situ small-angle X-ray scattering (SAXS) attribute this reduced alignment to enhanced rotary diffusion, driven by carboxylate groups of the Helux. With Helux, multivalent links across the nanofibers give a denser and tougher network with fewer voids. This behavior resembles lignin and hemicellulose interactions in wood, where flexibility and cohesion govern the performance.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.