用于中枢神经系统治疗的框架核酸纳米材料:屏障穿透、靶向递送、细胞摄取和内体逃逸的设计。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-30 DOI:10.1021/acsnano.5c03945
Xingyu Chen, Xutao Luo, Wumeng Yin, Weitong Cui, Yao He, Taoran Tian* and Yunfeng Lin*, 
{"title":"用于中枢神经系统治疗的框架核酸纳米材料:屏障穿透、靶向递送、细胞摄取和内体逃逸的设计。","authors":"Xingyu Chen,&nbsp;Xutao Luo,&nbsp;Wumeng Yin,&nbsp;Weitong Cui,&nbsp;Yao He,&nbsp;Taoran Tian* and Yunfeng Lin*,&nbsp;","doi":"10.1021/acsnano.5c03945","DOIUrl":null,"url":null,"abstract":"<p >Therapeutic development for central nervous system (CNS) disorders remains hindered by inefficient drug penetration across the blood–brain barrier (BBB) and a lack of spatiotemporal precision targeting. Conventional nanocarriers face challenges such as structural heterogeneity, off-target effects, and limited BBB traversal, compromising clinical efficacy. Framework nucleic acid (FNA) nanomaterials, characterized by atomic-level precision, programmable self-assembly, and inherent biocompatibility, present a transformative platform to overcome these barriers. However, a systematic analysis of their design principles and therapeutic potential remains unexplored. This review systematically analyzes FNA design strategies for CNS applications, emphasizing four pivotal stages: BBB penetration, brain region/cell-specific targeting, enhanced cellular uptake, and subsequent endosomal/lysosomal escape for therapeutic cargo release. While preclinical studies highlight FNAs’ potential in treating brain tumors, neurodegenerative diseases, ischemic stroke, clinical translation requires addressing biological stability, mechanistic clarity, and long-term biosafety. Integrating innovative design strategies, computational modeling, single-cell omics, and advanced 3D BBB models will accelerate the development of precision FNA-based therapies. By bridging precision nanodesign with neurobiological insights, this work provides actionable guidelines for advancing FNAs as paradigm-shifting tools for overcoming CNS therapeutic bottlenecks and accelerating their clinical translation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 27","pages":"24335–24376"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Framework Nucleic Acid Nanomaterials for Central Nervous System Therapies: Design for Barrier Penetration, Targeted Delivery, Cellular Uptake, and Endosomal Escape\",\"authors\":\"Xingyu Chen,&nbsp;Xutao Luo,&nbsp;Wumeng Yin,&nbsp;Weitong Cui,&nbsp;Yao He,&nbsp;Taoran Tian* and Yunfeng Lin*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c03945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Therapeutic development for central nervous system (CNS) disorders remains hindered by inefficient drug penetration across the blood–brain barrier (BBB) and a lack of spatiotemporal precision targeting. Conventional nanocarriers face challenges such as structural heterogeneity, off-target effects, and limited BBB traversal, compromising clinical efficacy. Framework nucleic acid (FNA) nanomaterials, characterized by atomic-level precision, programmable self-assembly, and inherent biocompatibility, present a transformative platform to overcome these barriers. However, a systematic analysis of their design principles and therapeutic potential remains unexplored. This review systematically analyzes FNA design strategies for CNS applications, emphasizing four pivotal stages: BBB penetration, brain region/cell-specific targeting, enhanced cellular uptake, and subsequent endosomal/lysosomal escape for therapeutic cargo release. While preclinical studies highlight FNAs’ potential in treating brain tumors, neurodegenerative diseases, ischemic stroke, clinical translation requires addressing biological stability, mechanistic clarity, and long-term biosafety. Integrating innovative design strategies, computational modeling, single-cell omics, and advanced 3D BBB models will accelerate the development of precision FNA-based therapies. By bridging precision nanodesign with neurobiological insights, this work provides actionable guidelines for advancing FNAs as paradigm-shifting tools for overcoming CNS therapeutic bottlenecks and accelerating their clinical translation.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 27\",\"pages\":\"24335–24376\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c03945\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c03945","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

中枢神经系统(CNS)疾病的治疗发展仍然受到药物穿透血脑屏障(BBB)效率低下和缺乏时空精确靶向的阻碍。传统的纳米载体面临着结构不均一性、脱靶效应、血脑屏障穿越受限等挑战,影响了临床疗效。框架核酸(FNA)纳米材料具有原子级精度、可编程自组装和固有的生物相容性等特点,为克服这些障碍提供了一个变革性的平台。然而,对其设计原理和治疗潜力的系统分析仍未得到探索。本文系统分析了FNA在中枢神经系统应用中的设计策略,强调了四个关键阶段:血脑屏障渗透,脑区域/细胞特异性靶向,增强细胞摄取,以及随后的内体/溶酶体逃逸以释放治疗货物。虽然临床前研究强调了FNAs在治疗脑肿瘤、神经退行性疾病、缺血性中风方面的潜力,但临床转化需要解决生物学稳定性、机制清晰度和长期生物安全性问题。整合创新的设计策略、计算建模、单细胞组学和先进的3D血脑屏障模型将加速基于dna的精确治疗的发展。通过将精确的纳米设计与神经生物学的见解相结合,这项工作为推进FNAs作为克服中枢神经系统治疗瓶颈和加速其临床转化的范式转换工具提供了可行的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Framework Nucleic Acid Nanomaterials for Central Nervous System Therapies: Design for Barrier Penetration, Targeted Delivery, Cellular Uptake, and Endosomal Escape

Framework Nucleic Acid Nanomaterials for Central Nervous System Therapies: Design for Barrier Penetration, Targeted Delivery, Cellular Uptake, and Endosomal Escape

Therapeutic development for central nervous system (CNS) disorders remains hindered by inefficient drug penetration across the blood–brain barrier (BBB) and a lack of spatiotemporal precision targeting. Conventional nanocarriers face challenges such as structural heterogeneity, off-target effects, and limited BBB traversal, compromising clinical efficacy. Framework nucleic acid (FNA) nanomaterials, characterized by atomic-level precision, programmable self-assembly, and inherent biocompatibility, present a transformative platform to overcome these barriers. However, a systematic analysis of their design principles and therapeutic potential remains unexplored. This review systematically analyzes FNA design strategies for CNS applications, emphasizing four pivotal stages: BBB penetration, brain region/cell-specific targeting, enhanced cellular uptake, and subsequent endosomal/lysosomal escape for therapeutic cargo release. While preclinical studies highlight FNAs’ potential in treating brain tumors, neurodegenerative diseases, ischemic stroke, clinical translation requires addressing biological stability, mechanistic clarity, and long-term biosafety. Integrating innovative design strategies, computational modeling, single-cell omics, and advanced 3D BBB models will accelerate the development of precision FNA-based therapies. By bridging precision nanodesign with neurobiological insights, this work provides actionable guidelines for advancing FNAs as paradigm-shifting tools for overcoming CNS therapeutic bottlenecks and accelerating their clinical translation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信