替代呼吸无底液滴pH值的测量及其对呼出呼吸道气溶胶和空气传播疾病的影响。

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Central Science Pub Date : 2025-06-02 eCollection Date: 2025-06-25 DOI:10.1021/acscentsci.5c00284
Jianghan Tian, Beiping Luo, Aidan Rafferty, Allen E Haddrell, Ulrich K Krieger, Jonathan P Reid
{"title":"替代呼吸无底液滴pH值的测量及其对呼出呼吸道气溶胶和空气传播疾病的影响。","authors":"Jianghan Tian, Beiping Luo, Aidan Rafferty, Allen E Haddrell, Ulrich K Krieger, Jonathan P Reid","doi":"10.1021/acscentsci.5c00284","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory aerosol pH has been proposed as a key factor driving the infectivity loss of SARS-CoV-2 viruses and influenza A virus in exhaled aerosols, thus affecting the airborne transmission of respiratory diseases. Sodium bicarbonate acts as a principal buffer in biological systems, regulating blood pH and the CO<sub>2</sub> balance between gas and liquid phases. Upon exhalation, changes in gas-phase conditions alter aerosol composition and pH. Despite Raman spectroscopy being used to quantify atmospherically relevant aerosol pH, the kinetics of CO<sub>2</sub> partitioning and pH variability in respiratory droplets remain poorly understood. In this paper, a method to investigate the HCO<sub>3</sub> <sup>-</sup>/CO<sub>3</sub> <sup>2-</sup> equilibrium in a surrogate respiratory fluid system within sessile droplets is proposed to elucidate the pH evolution of an exhaled respiratory aerosol. The enzymatic catalysis of CO<sub>2</sub> hydration and H<sub>2</sub>CO<sub>3</sub> dehydration is explored. Experimental results were used to benchmark the ResAM model, which simulates respiratory aerosol droplet thermodynamics and pH evolution. Simulated pH evolution profiles of picoliter droplets show size independence. Simulations for both sessile droplets and respiratory aerosols show that carbonic anhydrase significantly increases the rate of pH increase, and gas-phase CO<sub>2</sub> levels are important for determining the final droplet pH. Consequences for understanding the aerobiological pathways for virus transmission are considered.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 6","pages":"1009-1019"},"PeriodicalIF":12.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203433/pdf/","citationCount":"0","resultStr":"{\"title\":\"Measurements of Surrogate Respiratory Sessile Droplet pH and Implications for Exhaled Respiratory Aerosol and Airborne Disease Transmission.\",\"authors\":\"Jianghan Tian, Beiping Luo, Aidan Rafferty, Allen E Haddrell, Ulrich K Krieger, Jonathan P Reid\",\"doi\":\"10.1021/acscentsci.5c00284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Respiratory aerosol pH has been proposed as a key factor driving the infectivity loss of SARS-CoV-2 viruses and influenza A virus in exhaled aerosols, thus affecting the airborne transmission of respiratory diseases. Sodium bicarbonate acts as a principal buffer in biological systems, regulating blood pH and the CO<sub>2</sub> balance between gas and liquid phases. Upon exhalation, changes in gas-phase conditions alter aerosol composition and pH. Despite Raman spectroscopy being used to quantify atmospherically relevant aerosol pH, the kinetics of CO<sub>2</sub> partitioning and pH variability in respiratory droplets remain poorly understood. In this paper, a method to investigate the HCO<sub>3</sub> <sup>-</sup>/CO<sub>3</sub> <sup>2-</sup> equilibrium in a surrogate respiratory fluid system within sessile droplets is proposed to elucidate the pH evolution of an exhaled respiratory aerosol. The enzymatic catalysis of CO<sub>2</sub> hydration and H<sub>2</sub>CO<sub>3</sub> dehydration is explored. Experimental results were used to benchmark the ResAM model, which simulates respiratory aerosol droplet thermodynamics and pH evolution. Simulated pH evolution profiles of picoliter droplets show size independence. Simulations for both sessile droplets and respiratory aerosols show that carbonic anhydrase significantly increases the rate of pH increase, and gas-phase CO<sub>2</sub> levels are important for determining the final droplet pH. Consequences for understanding the aerobiological pathways for virus transmission are considered.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 6\",\"pages\":\"1009-1019\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203433/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscentsci.5c00284\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/25 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.5c00284","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

呼吸道气溶胶的pH值被认为是导致SARS-CoV-2病毒和甲型流感病毒在呼出气溶胶中丧失传染性的关键因素,从而影响呼吸道疾病的空气传播。碳酸氢钠在生物系统中起主要缓冲作用,调节血液pH值和气相和液相之间的二氧化碳平衡。在呼出时,气相条件的变化会改变气溶胶的组成和pH值。尽管拉曼光谱被用于量化大气相关的气溶胶pH值,但人们对呼吸液滴中二氧化碳分配和pH变化的动力学仍然知之甚少。本文提出了一种方法来研究固定液滴内替代呼吸道液体系统中的HCO3 -/ co32 -平衡,以阐明呼出的呼吸道气溶胶的pH演变。探讨了CO2水化和H2CO3脱水的酶催化作用。利用实验结果对模拟呼吸道气溶胶液滴热力学和pH演化的ResAM模型进行了基准测试。模拟的皮升液滴的pH演化曲线显示出尺寸独立性。对无根液滴和呼吸性气溶胶的模拟表明,碳酸酐酶显著增加了pH值的增加速度,而气相CO2水平对于确定最终液滴的pH值很重要。本文考虑了理解病毒传播的有氧生物学途径的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurements of Surrogate Respiratory Sessile Droplet pH and Implications for Exhaled Respiratory Aerosol and Airborne Disease Transmission.

Respiratory aerosol pH has been proposed as a key factor driving the infectivity loss of SARS-CoV-2 viruses and influenza A virus in exhaled aerosols, thus affecting the airborne transmission of respiratory diseases. Sodium bicarbonate acts as a principal buffer in biological systems, regulating blood pH and the CO2 balance between gas and liquid phases. Upon exhalation, changes in gas-phase conditions alter aerosol composition and pH. Despite Raman spectroscopy being used to quantify atmospherically relevant aerosol pH, the kinetics of CO2 partitioning and pH variability in respiratory droplets remain poorly understood. In this paper, a method to investigate the HCO3 -/CO3 2- equilibrium in a surrogate respiratory fluid system within sessile droplets is proposed to elucidate the pH evolution of an exhaled respiratory aerosol. The enzymatic catalysis of CO2 hydration and H2CO3 dehydration is explored. Experimental results were used to benchmark the ResAM model, which simulates respiratory aerosol droplet thermodynamics and pH evolution. Simulated pH evolution profiles of picoliter droplets show size independence. Simulations for both sessile droplets and respiratory aerosols show that carbonic anhydrase significantly increases the rate of pH increase, and gas-phase CO2 levels are important for determining the final droplet pH. Consequences for understanding the aerobiological pathways for virus transmission are considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信