三(2-氨基乙基)胺(TREN)功能银、铂和钯纳米粒子- gqds配合物的等离子体增强非线性吸收及其在生物成像中的潜在应用

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2025-07-21 Epub Date: 2025-07-01 DOI:10.1021/acsabm.5c00750
Bekir Asilcan Unlu, Esen Kirit, Dogantan Celik, Elif Akhuseyin Yildiz, Ahmet Karatay, Bahadir Boyacioglu, Hüseyin Ünver, Açelya Yilmazer, Mustafa Yıldız, Ayhan Elmali
{"title":"三(2-氨基乙基)胺(TREN)功能银、铂和钯纳米粒子- gqds配合物的等离子体增强非线性吸收及其在生物成像中的潜在应用","authors":"Bekir Asilcan Unlu, Esen Kirit, Dogantan Celik, Elif Akhuseyin Yildiz, Ahmet Karatay, Bahadir Boyacioglu, Hüseyin Ünver, Açelya Yilmazer, Mustafa Yıldız, Ayhan Elmali","doi":"10.1021/acsabm.5c00750","DOIUrl":null,"url":null,"abstract":"<p><p>Tris (2-aminoethyl)amine (TREN) functionalized N-doped graphene quantum dots (N-GQDs) and their Ag, Pd, and Pt nanocomposites were synthesized via a green one-step method and comprehensively characterized using FT-IR, UV-vis, TEM, and EDX. Spectroscopic analysis revealed π-π* transitions of C═C bonds (245-250 nm) and <i>n</i>-π* transitions of C═O and C═N bonds (334-350 nm), elucidating the materials' optical properties. Photoluminescence studies revealed excitation wavelength-dependent emissions, indicating the presence of edge defect levels. Femtosecond transient absorption spectroscopy revealed a shortened excited-state lifetime upon incorporation of a metal atom into TREN-GQDs. Nonlinear absorption was explored by using the open-aperture Z-scan method, revealing enhanced performance upon incorporation of plasmonic nanoparticles. Ag-incorporated samples exhibited the highest NLA response due to plasmon-enhanced two-photon absorption. Notably, Pt-incorporated N-GQDs showed improved NLA and good biocompatibility with the intracellular fluorescence response, positioning them as promising candidates for bioimaging applications. Density functional theory (DFT) calculations, including gas-phase optimizations and aqueous simulations, confirmed alignment with experimental results, highlighting the enhanced stability and reactivity of nanocomposites. These findings highlight the potential of these materials in various applications, such as optical limiting, imaging, photovoltaics, and sensing applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"6261-6277"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284890/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Enhanced Nonlinear Absorption of Tris(2-aminoethyl)amine (TREN) Functional Ag, Pt, and Pd Nanoparticle-GQDs Complexes and Their Evaluation as Potential Bioimaging Applications.\",\"authors\":\"Bekir Asilcan Unlu, Esen Kirit, Dogantan Celik, Elif Akhuseyin Yildiz, Ahmet Karatay, Bahadir Boyacioglu, Hüseyin Ünver, Açelya Yilmazer, Mustafa Yıldız, Ayhan Elmali\",\"doi\":\"10.1021/acsabm.5c00750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tris (2-aminoethyl)amine (TREN) functionalized N-doped graphene quantum dots (N-GQDs) and their Ag, Pd, and Pt nanocomposites were synthesized via a green one-step method and comprehensively characterized using FT-IR, UV-vis, TEM, and EDX. Spectroscopic analysis revealed π-π* transitions of C═C bonds (245-250 nm) and <i>n</i>-π* transitions of C═O and C═N bonds (334-350 nm), elucidating the materials' optical properties. Photoluminescence studies revealed excitation wavelength-dependent emissions, indicating the presence of edge defect levels. Femtosecond transient absorption spectroscopy revealed a shortened excited-state lifetime upon incorporation of a metal atom into TREN-GQDs. Nonlinear absorption was explored by using the open-aperture Z-scan method, revealing enhanced performance upon incorporation of plasmonic nanoparticles. Ag-incorporated samples exhibited the highest NLA response due to plasmon-enhanced two-photon absorption. Notably, Pt-incorporated N-GQDs showed improved NLA and good biocompatibility with the intracellular fluorescence response, positioning them as promising candidates for bioimaging applications. Density functional theory (DFT) calculations, including gas-phase optimizations and aqueous simulations, confirmed alignment with experimental results, highlighting the enhanced stability and reactivity of nanocomposites. These findings highlight the potential of these materials in various applications, such as optical limiting, imaging, photovoltaics, and sensing applications.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"6261-6277\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284890/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

采用绿色一步法合成了三(2-氨基乙基)胺(TREN)功能化n掺杂石墨烯量子点(N-GQDs)及其Ag、Pd和Pt纳米复合材料,并利用FT-IR、UV-vis、TEM和EDX对其进行了综合表征。光谱分析显示C = C键的π-π*跃迁(245-250 nm)和C = O和C = n键的n-π*跃迁(334-350 nm),阐明了材料的光学性质。光致发光研究揭示了激发波长相关的发射,表明存在边缘缺陷水平。飞秒瞬态吸收光谱显示,金属原子掺入treng - gqds后,激发态寿命缩短。利用开孔z扫描方法研究了非线性吸收,揭示了等离子体纳米粒子的加入增强了性能。银掺杂样品由于等离子体增强双光子吸收而表现出最高的NLA响应。值得注意的是,pt结合的N-GQDs具有更好的NLA和良好的细胞内荧光响应生物相容性,使其成为生物成像应用的有希望的候选者。密度泛函理论(DFT)计算,包括气相优化和水相模拟,证实了与实验结果的一致性,突出了纳米复合材料的稳定性和反应性的增强。这些发现突出了这些材料在各种应用中的潜力,例如光学限制,成像,光伏和传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasmonic Enhanced Nonlinear Absorption of Tris(2-aminoethyl)amine (TREN) Functional Ag, Pt, and Pd Nanoparticle-GQDs Complexes and Their Evaluation as Potential Bioimaging Applications.

Tris (2-aminoethyl)amine (TREN) functionalized N-doped graphene quantum dots (N-GQDs) and their Ag, Pd, and Pt nanocomposites were synthesized via a green one-step method and comprehensively characterized using FT-IR, UV-vis, TEM, and EDX. Spectroscopic analysis revealed π-π* transitions of C═C bonds (245-250 nm) and n-π* transitions of C═O and C═N bonds (334-350 nm), elucidating the materials' optical properties. Photoluminescence studies revealed excitation wavelength-dependent emissions, indicating the presence of edge defect levels. Femtosecond transient absorption spectroscopy revealed a shortened excited-state lifetime upon incorporation of a metal atom into TREN-GQDs. Nonlinear absorption was explored by using the open-aperture Z-scan method, revealing enhanced performance upon incorporation of plasmonic nanoparticles. Ag-incorporated samples exhibited the highest NLA response due to plasmon-enhanced two-photon absorption. Notably, Pt-incorporated N-GQDs showed improved NLA and good biocompatibility with the intracellular fluorescence response, positioning them as promising candidates for bioimaging applications. Density functional theory (DFT) calculations, including gas-phase optimizations and aqueous simulations, confirmed alignment with experimental results, highlighting the enhanced stability and reactivity of nanocomposites. These findings highlight the potential of these materials in various applications, such as optical limiting, imaging, photovoltaics, and sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信