DIF分析锚点选择策略的比较

IF 1.6 4区 心理学 Q3 PSYCHOLOGY, APPLIED
Haeju Lee, Kyung Yong Kim
{"title":"DIF分析锚点选择策略的比较","authors":"Haeju Lee,&nbsp;Kyung Yong Kim","doi":"10.1111/jedm.12429","DOIUrl":null,"url":null,"abstract":"<p>When no prior information of differential item functioning (DIF) exists for items in a test, either the rank-based or iterative purification procedure might be preferred. The rank-based purification selects anchor items based on a preliminary DIF test. For a preliminary DIF test, likelihood ratio test (LRT) based approaches (e.g., all-others-as-anchors: AOAA and one-item-anchor: OIA) and an improved version of Lord's Wald test (i.e., anchor-all-test-all: AATA) have been used in research studies. However, both LRT- and Wald-based procedures often select DIF items as anchor items and as a result, inflate Type <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>${\\mathrm{{\\mathrm I}}}$</annotation>\n </semantics></math> error rates. To overcome this issue, minimum test statistics (<span></span><math>\n <semantics>\n <mrow>\n <mi>Min</mi>\n <mspace></mspace>\n <msup>\n <mi>G</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>${\\mathrm{Min}}\\;{G^2}$</annotation>\n </semantics></math>/<span></span><math>\n <semantics>\n <msup>\n <mi>χ</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\chi ^2}$</annotation>\n </semantics></math>) or items with nonsignificant test statistics and large discrimination parameter estimates (<span></span><math>\n <semantics>\n <mi>NonsigMax</mi>\n <annotation>${\\mathrm{NonsigMax}}$</annotation>\n </semantics></math><i>A</i>) have been suggested in the literature to select anchor items. Nevertheless, little research has been done comparing combinations of the three anchor selection procedures paired with the two anchor selection criteria. Thus, the performance of the six rank-based strategies was compared in this study in terms of accuracy, power, and Type <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>${\\mathrm{{\\mathrm I}}}$</annotation>\n </semantics></math> error rates. Among the rank-based strategies, the AOAA-based strategies demonstrated greater robustness across various conditions compared to the AATA- and OIA-based strategies. Additionally, the <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>Min</mi>\n <mspace></mspace>\n </mrow>\n <msup>\n <mi>G</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>${\\mathrm{Min\\;}}{G^2}$</annotation>\n </semantics></math>/<span></span><math>\n <semantics>\n <msup>\n <mi>χ</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\chi ^2}$</annotation>\n </semantics></math> criterion exhibited better performance under various conditions compared to <span></span><math>\n <semantics>\n <mi>NonsigMax</mi>\n <annotation>${\\mathrm{NonsigMax}}$</annotation>\n </semantics></math><i>A</i> criterion.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":"62 2","pages":"311-344"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jedm.12429","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Anchor Selection Strategies for DIF Analysis\",\"authors\":\"Haeju Lee,&nbsp;Kyung Yong Kim\",\"doi\":\"10.1111/jedm.12429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When no prior information of differential item functioning (DIF) exists for items in a test, either the rank-based or iterative purification procedure might be preferred. The rank-based purification selects anchor items based on a preliminary DIF test. For a preliminary DIF test, likelihood ratio test (LRT) based approaches (e.g., all-others-as-anchors: AOAA and one-item-anchor: OIA) and an improved version of Lord's Wald test (i.e., anchor-all-test-all: AATA) have been used in research studies. However, both LRT- and Wald-based procedures often select DIF items as anchor items and as a result, inflate Type <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>${\\\\mathrm{{\\\\mathrm I}}}$</annotation>\\n </semantics></math> error rates. To overcome this issue, minimum test statistics (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Min</mi>\\n <mspace></mspace>\\n <msup>\\n <mi>G</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathrm{Min}}\\\\;{G^2}$</annotation>\\n </semantics></math>/<span></span><math>\\n <semantics>\\n <msup>\\n <mi>χ</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>${\\\\chi ^2}$</annotation>\\n </semantics></math>) or items with nonsignificant test statistics and large discrimination parameter estimates (<span></span><math>\\n <semantics>\\n <mi>NonsigMax</mi>\\n <annotation>${\\\\mathrm{NonsigMax}}$</annotation>\\n </semantics></math><i>A</i>) have been suggested in the literature to select anchor items. Nevertheless, little research has been done comparing combinations of the three anchor selection procedures paired with the two anchor selection criteria. Thus, the performance of the six rank-based strategies was compared in this study in terms of accuracy, power, and Type <span></span><math>\\n <semantics>\\n <mi>I</mi>\\n <annotation>${\\\\mathrm{{\\\\mathrm I}}}$</annotation>\\n </semantics></math> error rates. Among the rank-based strategies, the AOAA-based strategies demonstrated greater robustness across various conditions compared to the AATA- and OIA-based strategies. Additionally, the <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>Min</mi>\\n <mspace></mspace>\\n </mrow>\\n <msup>\\n <mi>G</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathrm{Min\\\\;}}{G^2}$</annotation>\\n </semantics></math>/<span></span><math>\\n <semantics>\\n <msup>\\n <mi>χ</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>${\\\\chi ^2}$</annotation>\\n </semantics></math> criterion exhibited better performance under various conditions compared to <span></span><math>\\n <semantics>\\n <mi>NonsigMax</mi>\\n <annotation>${\\\\mathrm{NonsigMax}}$</annotation>\\n </semantics></math><i>A</i> criterion.</p>\",\"PeriodicalId\":47871,\"journal\":{\"name\":\"Journal of Educational Measurement\",\"volume\":\"62 2\",\"pages\":\"311-344\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jedm.12429\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12429\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12429","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

当测试中的项目不存在差异项目功能(DIF)的先验信息时,基于等级的或迭代的纯化过程可能是首选的。基于等级的纯化根据初步的DIF测试选择锚点项目。对于初步的DIF检验,研究中使用了基于似然比检验(LRT)的方法(例如,所有其他人作为锚:AOAA和一项锚:OIA)和改进版本的Lord's Wald检验(即锚点全部测试:AATA)。然而,基于LRT和基于wald的过程通常都选择DIF项作为锚定项,因此,膨胀Type I ${\ mathm {{\ mathm I}}}$错误率。为了克服这个问题,最小检验统计量(Min g2 ${\ mathm {Min}};{G^2}$ / χ 2 ${\chi ^2}$)或具有不显著检验统计量和大判别参数估计的项目(NonsigMax ${\mathrm{NonsigMax}}$ A)已经在文献中被建议选择锚项。然而,很少有研究对三种锚点选择程序与两种锚点选择标准的组合进行比较。因此,在本研究中,比较了六种基于排名的策略在准确率、功率和类型I ${\ mathm {{\ mathm I}}}$错误率方面的表现。在基于排名的策略中,与基于AATA和基于oia的策略相比,基于aoaa的策略在各种条件下表现出更强的鲁棒性。此外,Min g2 ${\ mathm {Min\;}}{G^2}$ / χ 2 ${\chi ^2}$准则在各种条件下均表现出较好的性能与NonsigMax ${\mathrm{NonsigMax}}$ A标准比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Comparison of Anchor Selection Strategies for DIF Analysis

A Comparison of Anchor Selection Strategies for DIF Analysis

When no prior information of differential item functioning (DIF) exists for items in a test, either the rank-based or iterative purification procedure might be preferred. The rank-based purification selects anchor items based on a preliminary DIF test. For a preliminary DIF test, likelihood ratio test (LRT) based approaches (e.g., all-others-as-anchors: AOAA and one-item-anchor: OIA) and an improved version of Lord's Wald test (i.e., anchor-all-test-all: AATA) have been used in research studies. However, both LRT- and Wald-based procedures often select DIF items as anchor items and as a result, inflate Type I ${\mathrm{{\mathrm I}}}$ error rates. To overcome this issue, minimum test statistics ( Min G 2 ${\mathrm{Min}}\;{G^2}$ / χ 2 ${\chi ^2}$ ) or items with nonsignificant test statistics and large discrimination parameter estimates ( NonsigMax ${\mathrm{NonsigMax}}$ A) have been suggested in the literature to select anchor items. Nevertheless, little research has been done comparing combinations of the three anchor selection procedures paired with the two anchor selection criteria. Thus, the performance of the six rank-based strategies was compared in this study in terms of accuracy, power, and Type I ${\mathrm{{\mathrm I}}}$ error rates. Among the rank-based strategies, the AOAA-based strategies demonstrated greater robustness across various conditions compared to the AATA- and OIA-based strategies. Additionally, the Min G 2 ${\mathrm{Min\;}}{G^2}$ / χ 2 ${\chi ^2}$ criterion exhibited better performance under various conditions compared to NonsigMax ${\mathrm{NonsigMax}}$ A criterion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
46
期刊介绍: The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信