{"title":"MIL-88B-Fe金属有机骨架与次磷酸二乙酯铝在环氧树脂中的协同阻燃性能","authors":"Song Wang, Xiaoran Wang","doi":"10.1002/vnl.22210","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Four metal–organic frameworks (MOFs), namely MIL-88B-Fe, MIL-53-Fe, Co-MOF, and Ni-MOF, were successfully prepared using polyethylene terephthalate (PET) waste as the raw material. The structure and morphology of the prepared MOFs were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Subsequently, the synergistic flame retardancy of these MOFs with aluminum diethylphosphinate (ADP) in epoxy resin (EP) was compared. The prepared MOFs, in particular MIL-88B-Fe, exhibited significant synergistic flame retardancy when used in combination with ADP. When the addition amount of MIL-88B-Fe and ADP in EP was 4% with the MIL-88B-Fe to ADP weight ratio at 1:19, the prepared flame-retardant EP, EP/Fe88B-ADP-2:38, successfully achieved a high limiting oxygen index (LOI) value of 34.2%. Thermogravimetric analysis (TGA) results indicated that the residual carbon amount in EP/Fe88B-ADP-2:38 increased by approximately 6.6% compared to pure EP. Additionally, the peak heat release rate (PHRR) of EP/Fe88B-ADP-2:38 decreased by 30.2% compared to pure EP. EP/Fe88B-ADP-2:38 also demonstrated excellent smoke suppression, with a 16.5% decrease in total smoke production (TSP) compared to EP. These studies have provided new insights into the efficient utilization of PET waste. The synergistic flame retardant, composed of PET waste-derived MIL-88B-Fe and ADP, can enhance the flame retardancy of EP while preserving EP's mechanical properties.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>PET waste-derived MIL-88B-Fe showed synergistic flame retardancy with ADP.</li>\n \n <li>4% MIL-88B-Fe and ADP at a 1:19 weight ratio in EP reached a UL-94 V-0 rating.</li>\n \n <li>MIL-88B-Fe/ADP flame retardant hardly decreased the EP mechanical properties.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":17662,"journal":{"name":"Journal of Vinyl & Additive Technology","volume":"31 4","pages":"824-838"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic flame retardancy of MIL-88B-Fe metal–organic framework with aluminum diethyl hypophosphite in epoxy resin\",\"authors\":\"Song Wang, Xiaoran Wang\",\"doi\":\"10.1002/vnl.22210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Four metal–organic frameworks (MOFs), namely MIL-88B-Fe, MIL-53-Fe, Co-MOF, and Ni-MOF, were successfully prepared using polyethylene terephthalate (PET) waste as the raw material. The structure and morphology of the prepared MOFs were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Subsequently, the synergistic flame retardancy of these MOFs with aluminum diethylphosphinate (ADP) in epoxy resin (EP) was compared. The prepared MOFs, in particular MIL-88B-Fe, exhibited significant synergistic flame retardancy when used in combination with ADP. When the addition amount of MIL-88B-Fe and ADP in EP was 4% with the MIL-88B-Fe to ADP weight ratio at 1:19, the prepared flame-retardant EP, EP/Fe88B-ADP-2:38, successfully achieved a high limiting oxygen index (LOI) value of 34.2%. Thermogravimetric analysis (TGA) results indicated that the residual carbon amount in EP/Fe88B-ADP-2:38 increased by approximately 6.6% compared to pure EP. Additionally, the peak heat release rate (PHRR) of EP/Fe88B-ADP-2:38 decreased by 30.2% compared to pure EP. EP/Fe88B-ADP-2:38 also demonstrated excellent smoke suppression, with a 16.5% decrease in total smoke production (TSP) compared to EP. These studies have provided new insights into the efficient utilization of PET waste. The synergistic flame retardant, composed of PET waste-derived MIL-88B-Fe and ADP, can enhance the flame retardancy of EP while preserving EP's mechanical properties.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Highlights</h3>\\n \\n <div>\\n <ul>\\n \\n <li>PET waste-derived MIL-88B-Fe showed synergistic flame retardancy with ADP.</li>\\n \\n <li>4% MIL-88B-Fe and ADP at a 1:19 weight ratio in EP reached a UL-94 V-0 rating.</li>\\n \\n <li>MIL-88B-Fe/ADP flame retardant hardly decreased the EP mechanical properties.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":17662,\"journal\":{\"name\":\"Journal of Vinyl & Additive Technology\",\"volume\":\"31 4\",\"pages\":\"824-838\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vinyl & Additive Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/vnl.22210\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vinyl & Additive Technology","FirstCategoryId":"88","ListUrlMain":"https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/vnl.22210","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synergistic flame retardancy of MIL-88B-Fe metal–organic framework with aluminum diethyl hypophosphite in epoxy resin
Four metal–organic frameworks (MOFs), namely MIL-88B-Fe, MIL-53-Fe, Co-MOF, and Ni-MOF, were successfully prepared using polyethylene terephthalate (PET) waste as the raw material. The structure and morphology of the prepared MOFs were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Subsequently, the synergistic flame retardancy of these MOFs with aluminum diethylphosphinate (ADP) in epoxy resin (EP) was compared. The prepared MOFs, in particular MIL-88B-Fe, exhibited significant synergistic flame retardancy when used in combination with ADP. When the addition amount of MIL-88B-Fe and ADP in EP was 4% with the MIL-88B-Fe to ADP weight ratio at 1:19, the prepared flame-retardant EP, EP/Fe88B-ADP-2:38, successfully achieved a high limiting oxygen index (LOI) value of 34.2%. Thermogravimetric analysis (TGA) results indicated that the residual carbon amount in EP/Fe88B-ADP-2:38 increased by approximately 6.6% compared to pure EP. Additionally, the peak heat release rate (PHRR) of EP/Fe88B-ADP-2:38 decreased by 30.2% compared to pure EP. EP/Fe88B-ADP-2:38 also demonstrated excellent smoke suppression, with a 16.5% decrease in total smoke production (TSP) compared to EP. These studies have provided new insights into the efficient utilization of PET waste. The synergistic flame retardant, composed of PET waste-derived MIL-88B-Fe and ADP, can enhance the flame retardancy of EP while preserving EP's mechanical properties.
Highlights
PET waste-derived MIL-88B-Fe showed synergistic flame retardancy with ADP.
4% MIL-88B-Fe and ADP at a 1:19 weight ratio in EP reached a UL-94 V-0 rating.
MIL-88B-Fe/ADP flame retardant hardly decreased the EP mechanical properties.
期刊介绍:
Journal of Vinyl and Additive Technology is a peer-reviewed technical publication for new work in the fields of polymer modifiers and additives, vinyl polymers and selected review papers. Over half of all papers in JVAT are based on technology of additives and modifiers for all classes of polymers: thermoset polymers and both condensation and addition thermoplastics. Papers on vinyl technology include PVC additives.