修正CIP-Soroban方法及其在惯性约束聚变内爆过程中的应用

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhehao Lin, Kazumasa Takahashi, Toru Sasaki, Takashi Kikuchi, Atsushi Sunahara
{"title":"修正CIP-Soroban方法及其在惯性约束聚变内爆过程中的应用","authors":"Zhehao Lin,&nbsp;Kazumasa Takahashi,&nbsp;Toru Sasaki,&nbsp;Takashi Kikuchi,&nbsp;Atsushi Sunahara","doi":"10.1002/fld.5392","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The CIP-Soroban method is an excellent adaptive meshless method capable of solving advection problems with 3rd-order accuracy by combining the Constrained Interpolation Profile/Cubic Interpolated Pseudo-particle (CIP) method. This study proposes a modified version of the CIP-Soroban method specifically designed to address severe compressible hydrodynamic scenarios. The proposed method includes a material distinguishing approach, incorporates a modified form of monitoring functions for grid generation, utilizes a staggered grid arrangement, incorporates the Maximum and minimum Bounds method, solves non-advection terms using a finite difference method, and employs an adjusted procedure for stably solving the governing equations. We applied the modified CIP-Soroban method to simulate the implosion process in inertial confinement fusion (ICF), which is commonly modeled by compressible fluid and has the problems of large gradients of physical values and strong nonlinearity for stable and accurate numerical analysis. Implosion simulations were performed using a series of grids with increasing resolutions, ranging from coarse to fine grid settings, as one of the application examples. The results indicated that compared to the conventional uniform grid CIP method, the modified CIP-Soroban method reduced computational costs (calculation time, memory occupancy, and grid number) for obtaining the same precision results.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 8","pages":"1120-1141"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified CIP-Soroban Method and Its Application in Implosion Process of Inertial Confinement Fusion\",\"authors\":\"Zhehao Lin,&nbsp;Kazumasa Takahashi,&nbsp;Toru Sasaki,&nbsp;Takashi Kikuchi,&nbsp;Atsushi Sunahara\",\"doi\":\"10.1002/fld.5392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The CIP-Soroban method is an excellent adaptive meshless method capable of solving advection problems with 3rd-order accuracy by combining the Constrained Interpolation Profile/Cubic Interpolated Pseudo-particle (CIP) method. This study proposes a modified version of the CIP-Soroban method specifically designed to address severe compressible hydrodynamic scenarios. The proposed method includes a material distinguishing approach, incorporates a modified form of monitoring functions for grid generation, utilizes a staggered grid arrangement, incorporates the Maximum and minimum Bounds method, solves non-advection terms using a finite difference method, and employs an adjusted procedure for stably solving the governing equations. We applied the modified CIP-Soroban method to simulate the implosion process in inertial confinement fusion (ICF), which is commonly modeled by compressible fluid and has the problems of large gradients of physical values and strong nonlinearity for stable and accurate numerical analysis. Implosion simulations were performed using a series of grids with increasing resolutions, ranging from coarse to fine grid settings, as one of the application examples. The results indicated that compared to the conventional uniform grid CIP method, the modified CIP-Soroban method reduced computational costs (calculation time, memory occupancy, and grid number) for obtaining the same precision results.</p>\\n </div>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"97 8\",\"pages\":\"1120-1141\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5392\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5392","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

CIP- soroban方法是一种结合约束插值轮廓和三次插值伪粒子(CIP)方法求解平流问题的优秀的自适应无网格方法。本研究提出了CIP-Soroban方法的改进版本,专门用于解决严重的可压缩水动力情况。所提出的方法包括一种材料区分方法,采用一种改进形式的监测函数用于网格生成,采用交错网格排列,采用最大值和最小限值方法,使用有限差分方法求解非平流项,并采用一种调整程序来稳定求解控制方程。采用改进的CIP-Soroban方法对惯性约束聚变(ICF)的内爆过程进行了数值模拟,该过程通常采用可压缩流体进行模拟,存在物理值梯度大、非线性强等问题,需要进行稳定、准确的数值分析。作为应用实例之一,内爆模拟使用了一系列分辨率不断增加的网格,范围从粗网格到细网格设置。结果表明,与传统的均匀网格CIP方法相比,改进的CIP- soroban方法在获得相同精度结果时减少了计算成本(计算时间、内存占用和网格数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modified CIP-Soroban Method and Its Application in Implosion Process of Inertial Confinement Fusion

Modified CIP-Soroban Method and Its Application in Implosion Process of Inertial Confinement Fusion

The CIP-Soroban method is an excellent adaptive meshless method capable of solving advection problems with 3rd-order accuracy by combining the Constrained Interpolation Profile/Cubic Interpolated Pseudo-particle (CIP) method. This study proposes a modified version of the CIP-Soroban method specifically designed to address severe compressible hydrodynamic scenarios. The proposed method includes a material distinguishing approach, incorporates a modified form of monitoring functions for grid generation, utilizes a staggered grid arrangement, incorporates the Maximum and minimum Bounds method, solves non-advection terms using a finite difference method, and employs an adjusted procedure for stably solving the governing equations. We applied the modified CIP-Soroban method to simulate the implosion process in inertial confinement fusion (ICF), which is commonly modeled by compressible fluid and has the problems of large gradients of physical values and strong nonlinearity for stable and accurate numerical analysis. Implosion simulations were performed using a series of grids with increasing resolutions, ranging from coarse to fine grid settings, as one of the application examples. The results indicated that compared to the conventional uniform grid CIP method, the modified CIP-Soroban method reduced computational costs (calculation time, memory occupancy, and grid number) for obtaining the same precision results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信