使用ReLUs跨越多资产收益

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Sébastien Bossu, Stéphane Crépey, Hoang-Dung Nguyen
{"title":"使用ReLUs跨越多资产收益","authors":"Sébastien Bossu,&nbsp;Stéphane Crépey,&nbsp;Hoang-Dung Nguyen","doi":"10.1111/mafi.12454","DOIUrl":null,"url":null,"abstract":"<p>We propose a distributional formulation of the spanning problem of a multi-asset payoff by vanilla basket options. This problem is shown to have a unique solution if and only if the payoff function is even and absolutely homogeneous, and we establish a Fourier-based formula to calculate the solution. Financial payoffs are typically piecewise linear, resulting in a solution that may be derived explicitly, yet may also be hard to exploit numerically. One-hidden-layer feedforward neural networks instead provide a natural and efficient numerical alternative for discrete spanning. We test this approach for a selection of archetypal payoffs and obtain better hedging results with vanilla basket options compared to industry-favored approaches based on single-asset vanilla hedges.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"35 3","pages":"682-707"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12454","citationCount":"0","resultStr":"{\"title\":\"Spanning Multi-Asset Payoffs With ReLUs\",\"authors\":\"Sébastien Bossu,&nbsp;Stéphane Crépey,&nbsp;Hoang-Dung Nguyen\",\"doi\":\"10.1111/mafi.12454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a distributional formulation of the spanning problem of a multi-asset payoff by vanilla basket options. This problem is shown to have a unique solution if and only if the payoff function is even and absolutely homogeneous, and we establish a Fourier-based formula to calculate the solution. Financial payoffs are typically piecewise linear, resulting in a solution that may be derived explicitly, yet may also be hard to exploit numerically. One-hidden-layer feedforward neural networks instead provide a natural and efficient numerical alternative for discrete spanning. We test this approach for a selection of archetypal payoffs and obtain better hedging results with vanilla basket options compared to industry-favored approaches based on single-asset vanilla hedges.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"35 3\",\"pages\":\"682-707\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12454\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12454\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12454","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于香草篮子期权的多资产支付生成问题的分布公式。当且仅当收益函数为偶且绝对齐次时,证明了该问题具有唯一解,并建立了一个基于傅立叶的公式来计算解。财务回报通常是分段线性的,导致可以明确推导出解决方案,但也可能难以在数字上利用。而单隐层前馈神经网络则为离散生成提供了一种自然而有效的数值选择。我们对这种方法进行了原型收益选择测试,与基于单一资产香草对冲的行业青睐方法相比,使用香草篮子期权获得了更好的对冲结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spanning Multi-Asset Payoffs With ReLUs

Spanning Multi-Asset Payoffs With ReLUs

We propose a distributional formulation of the spanning problem of a multi-asset payoff by vanilla basket options. This problem is shown to have a unique solution if and only if the payoff function is even and absolutely homogeneous, and we establish a Fourier-based formula to calculate the solution. Financial payoffs are typically piecewise linear, resulting in a solution that may be derived explicitly, yet may also be hard to exploit numerically. One-hidden-layer feedforward neural networks instead provide a natural and efficient numerical alternative for discrete spanning. We test this approach for a selection of archetypal payoffs and obtain better hedging results with vanilla basket options compared to industry-favored approaches based on single-asset vanilla hedges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信