局部随机波动模型的粗糙偏微分方程

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Peter Bank, Christian Bayer, Peter K. Friz, Luca Pelizzari
{"title":"局部随机波动模型的粗糙偏微分方程","authors":"Peter Bank,&nbsp;Christian Bayer,&nbsp;Peter K. Friz,&nbsp;Luca Pelizzari","doi":"10.1111/mafi.12458","DOIUrl":null,"url":null,"abstract":"<p>In this work, we introduce a novel pricing methodology in general, possibly non-Markovian local stochastic volatility (LSV) models. We observe that by conditioning the LSV dynamics on the Brownian motion that drives the volatility, one obtains a time-inhomogeneous Markov process. Using tools from rough path theory, we describe how to precisely understand the conditional LSV dynamics and reveal their Markovian nature. The latter allows us to connect the conditional dynamics to so-called rough partial differential equations (RPDEs), through a Feynman–Kac type of formula. In terms of European pricing, conditional on realizations of one Brownian motion, we can compute conditional option prices by solving the corresponding linear RPDEs, and then average over all samples to find unconditional prices. Our approach depends only minimally on the specification of the volatility, making it applicable for a wide range of classical and rough LSV models, and it establishes a PDE pricing method for non-Markovian models. Finally, we present a first glimpse at numerical methods for RPDEs and apply them to price European options in several rough LSV models.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"35 3","pages":"661-681"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12458","citationCount":"0","resultStr":"{\"title\":\"Rough PDEs for Local Stochastic Volatility Models\",\"authors\":\"Peter Bank,&nbsp;Christian Bayer,&nbsp;Peter K. Friz,&nbsp;Luca Pelizzari\",\"doi\":\"10.1111/mafi.12458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we introduce a novel pricing methodology in general, possibly non-Markovian local stochastic volatility (LSV) models. We observe that by conditioning the LSV dynamics on the Brownian motion that drives the volatility, one obtains a time-inhomogeneous Markov process. Using tools from rough path theory, we describe how to precisely understand the conditional LSV dynamics and reveal their Markovian nature. The latter allows us to connect the conditional dynamics to so-called rough partial differential equations (RPDEs), through a Feynman–Kac type of formula. In terms of European pricing, conditional on realizations of one Brownian motion, we can compute conditional option prices by solving the corresponding linear RPDEs, and then average over all samples to find unconditional prices. Our approach depends only minimally on the specification of the volatility, making it applicable for a wide range of classical and rough LSV models, and it establishes a PDE pricing method for non-Markovian models. Finally, we present a first glimpse at numerical methods for RPDEs and apply them to price European options in several rough LSV models.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"35 3\",\"pages\":\"661-681\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12458\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12458\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12458","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了一种新的定价方法,可能是非马尔可夫局部随机波动(LSV)模型。我们观察到,通过调节驱动波动的布朗运动的LSV动力学,可以得到一个时间非齐次的马尔可夫过程。利用粗糙路径理论的工具,我们描述了如何精确地理解条件LSV动力学并揭示其马尔可夫性质。后者允许我们通过费曼-卡茨类型的公式将条件动力学与所谓的粗糙偏微分方程(RPDEs)联系起来。对于欧式定价,以实现一个布朗运动为条件,我们可以通过求解相应的线性rpde来计算条件期权价格,然后对所有样本进行平均以找到无条件价格。我们的方法仅对波动率的规格依赖最小,使其适用于广泛的经典和粗糙的LSV模型,并建立了非马尔可夫模型的PDE定价方法。最后,我们首次介绍了rpde的数值方法,并将其应用于几种粗糙LSV模型中的欧洲期权定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rough PDEs for Local Stochastic Volatility Models

Rough PDEs for Local Stochastic Volatility Models

In this work, we introduce a novel pricing methodology in general, possibly non-Markovian local stochastic volatility (LSV) models. We observe that by conditioning the LSV dynamics on the Brownian motion that drives the volatility, one obtains a time-inhomogeneous Markov process. Using tools from rough path theory, we describe how to precisely understand the conditional LSV dynamics and reveal their Markovian nature. The latter allows us to connect the conditional dynamics to so-called rough partial differential equations (RPDEs), through a Feynman–Kac type of formula. In terms of European pricing, conditional on realizations of one Brownian motion, we can compute conditional option prices by solving the corresponding linear RPDEs, and then average over all samples to find unconditional prices. Our approach depends only minimally on the specification of the volatility, making it applicable for a wide range of classical and rough LSV models, and it establishes a PDE pricing method for non-Markovian models. Finally, we present a first glimpse at numerical methods for RPDEs and apply them to price European options in several rough LSV models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信