{"title":"基于人在环深度特征检索的水下船体污垢分割","authors":"Yajuan Gu, Jiawen Zhao, Junjie Zhang","doi":"10.1049/ell2.70332","DOIUrl":null,"url":null,"abstract":"<p>The inherent blurriness of underwater images, diversity of fouling patterns, and indistinct boundaries present significant challenges for underwater hull fouling segmentation tasks. To address these challenges, we propose a human–machine collaborative approach for underwater hull fouling segmentation, leveraging deep feature retrieval and local optimisation. Specifically, we first employ an image enhancement model as a preprocessing step to enhance underwater image clarity. Subsequently, a fine-grained segmentation model is utilised to generate initial segmentation results, which are then combined with a prior pixel label retrieval and propagation mechanism to identify locally optimised regions requiring refinement. Finally, manual correction of these localised regions is integrated with the segmentation model's predictions to achieve optimal segmentation performance. Experimental results on our self-constructed underwater hull fouling images dataset demonstrate the effectiveness of the proposed approach.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70332","citationCount":"0","resultStr":"{\"title\":\"Deep Feature Retrieval With Human-in-the-Loop for Underwater Hull Fouling Segmentation\",\"authors\":\"Yajuan Gu, Jiawen Zhao, Junjie Zhang\",\"doi\":\"10.1049/ell2.70332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The inherent blurriness of underwater images, diversity of fouling patterns, and indistinct boundaries present significant challenges for underwater hull fouling segmentation tasks. To address these challenges, we propose a human–machine collaborative approach for underwater hull fouling segmentation, leveraging deep feature retrieval and local optimisation. Specifically, we first employ an image enhancement model as a preprocessing step to enhance underwater image clarity. Subsequently, a fine-grained segmentation model is utilised to generate initial segmentation results, which are then combined with a prior pixel label retrieval and propagation mechanism to identify locally optimised regions requiring refinement. Finally, manual correction of these localised regions is integrated with the segmentation model's predictions to achieve optimal segmentation performance. Experimental results on our self-constructed underwater hull fouling images dataset demonstrate the effectiveness of the proposed approach.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70332\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70332\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70332","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deep Feature Retrieval With Human-in-the-Loop for Underwater Hull Fouling Segmentation
The inherent blurriness of underwater images, diversity of fouling patterns, and indistinct boundaries present significant challenges for underwater hull fouling segmentation tasks. To address these challenges, we propose a human–machine collaborative approach for underwater hull fouling segmentation, leveraging deep feature retrieval and local optimisation. Specifically, we first employ an image enhancement model as a preprocessing step to enhance underwater image clarity. Subsequently, a fine-grained segmentation model is utilised to generate initial segmentation results, which are then combined with a prior pixel label retrieval and propagation mechanism to identify locally optimised regions requiring refinement. Finally, manual correction of these localised regions is integrated with the segmentation model's predictions to achieve optimal segmentation performance. Experimental results on our self-constructed underwater hull fouling images dataset demonstrate the effectiveness of the proposed approach.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO