基于深度学习的PlanetScope图像中间歇性积雪的时空模式

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Zhaocheng Wang, Jaya Venkatesh Jaya Baskar, Maneesh Sarma Sistla Naga Sai, Bohumil Svoma, Enrique R. Vivoni
{"title":"基于深度学习的PlanetScope图像中间歇性积雪的时空模式","authors":"Zhaocheng Wang,&nbsp;Jaya Venkatesh Jaya Baskar,&nbsp;Maneesh Sarma Sistla Naga Sai,&nbsp;Bohumil Svoma,&nbsp;Enrique R. Vivoni","doi":"10.1029/2025GL116582","DOIUrl":null,"url":null,"abstract":"<p>Monitoring snow cover in regions with intermittent dynamics is a significant challenge due to the rapid changes occurring in snow accumulation and ablation over complex terrain. We trained a deep learning model with lidar-derived labels and PlanetScope CubeSat imagery to map near-daily snow cover dynamics at 3-m resolution. The model demonstrated a high accuracy in the Salt and Verde River basins of Arizona and strong transferability to other sites in the western United States. Temporal analysis of snow line from 2021 to 2023 revealed distinct patterns of snowpack dynamics driven by seasonal and interannual climatic variability. The high-resolution snow persistence maps also unveiled significant subgrid variability in snow cover at point and watershed scales, influenced by elevation, aspect, and vegetation cover. These findings illustrate the potential of integrating high-resolution CubeSat imagery with deep learning models to enhance our understanding of intermittent snowpack spatiotemporal variability in complex terrain.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 13","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL116582","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Patterns of Intermittent Snow Cover From PlanetScope Imagery Using Deep Learning\",\"authors\":\"Zhaocheng Wang,&nbsp;Jaya Venkatesh Jaya Baskar,&nbsp;Maneesh Sarma Sistla Naga Sai,&nbsp;Bohumil Svoma,&nbsp;Enrique R. Vivoni\",\"doi\":\"10.1029/2025GL116582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monitoring snow cover in regions with intermittent dynamics is a significant challenge due to the rapid changes occurring in snow accumulation and ablation over complex terrain. We trained a deep learning model with lidar-derived labels and PlanetScope CubeSat imagery to map near-daily snow cover dynamics at 3-m resolution. The model demonstrated a high accuracy in the Salt and Verde River basins of Arizona and strong transferability to other sites in the western United States. Temporal analysis of snow line from 2021 to 2023 revealed distinct patterns of snowpack dynamics driven by seasonal and interannual climatic variability. The high-resolution snow persistence maps also unveiled significant subgrid variability in snow cover at point and watershed scales, influenced by elevation, aspect, and vegetation cover. These findings illustrate the potential of integrating high-resolution CubeSat imagery with deep learning models to enhance our understanding of intermittent snowpack spatiotemporal variability in complex terrain.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 13\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL116582\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GL116582\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL116582","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于复杂地形上积雪积累和消融的快速变化,在具有间歇性动态的地区监测积雪是一项重大挑战。我们使用激光雷达衍生的标签和PlanetScope CubeSat图像训练了一个深度学习模型,以3米分辨率绘制近日积雪动态。该模型在亚利桑那州的盐河和佛得河流域具有很高的准确性,并且在美国西部的其他地点具有很强的可移植性。2021 - 2023年雪线的时间分析揭示了受季节和年际气候变率驱动的明显积雪动态模式。高分辨率积雪持续度图还揭示了受海拔、坡向和植被覆盖影响,在点和流域尺度上积雪的显著亚网格变异性。这些发现说明了将高分辨率立方体卫星图像与深度学习模型相结合的潜力,可以增强我们对复杂地形中间歇性积雪时空变化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatiotemporal Patterns of Intermittent Snow Cover From PlanetScope Imagery Using Deep Learning

Spatiotemporal Patterns of Intermittent Snow Cover From PlanetScope Imagery Using Deep Learning

Monitoring snow cover in regions with intermittent dynamics is a significant challenge due to the rapid changes occurring in snow accumulation and ablation over complex terrain. We trained a deep learning model with lidar-derived labels and PlanetScope CubeSat imagery to map near-daily snow cover dynamics at 3-m resolution. The model demonstrated a high accuracy in the Salt and Verde River basins of Arizona and strong transferability to other sites in the western United States. Temporal analysis of snow line from 2021 to 2023 revealed distinct patterns of snowpack dynamics driven by seasonal and interannual climatic variability. The high-resolution snow persistence maps also unveiled significant subgrid variability in snow cover at point and watershed scales, influenced by elevation, aspect, and vegetation cover. These findings illustrate the potential of integrating high-resolution CubeSat imagery with deep learning models to enhance our understanding of intermittent snowpack spatiotemporal variability in complex terrain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信