基于频率增量优化的FDA-MIMO雷达目标定位

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lan Lan;Kunkun Li;Jingwei Xu;Guisheng Liao;Hing Cheung So
{"title":"基于频率增量优化的FDA-MIMO雷达目标定位","authors":"Lan Lan;Kunkun Li;Jingwei Xu;Guisheng Liao;Hing Cheung So","doi":"10.1109/LSP.2025.3580319","DOIUrl":null,"url":null,"abstract":"This letter presents an optimization approach for frequency increments tailored to Frequency Diverse Array (FDA)-Multiple-Input Multiple-Output (MIMO) radar for target localization. We start to formulate the problem as minimizing the Cramér-Rao Bounds (CRBs) for both range and angle estimation, subject to practical constraints on the frequency increments. To facilitate optimization, the objective function is mathematically transformed, which results in a maximization problem, leveraging its inherent non-negativity of both the numerator and denominator. To address the resultant non-convex and NP-hard optimization problem, a Minorization-Maximization (MM)-Maximum Block Improvement (MBI) algorithm is devised by partitioning the frequency increment vector into distinct blocks, allowing for alternating maximization. In particular, each frequency increment is refined with the MM algorithm, while holding the others fixed, and only the block yielding the maximum objective increment is updated within each iteration. Simulation results are provided to demonstrate the excellent target localization of our proposed approach.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"2529-2533"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Increment Optimization With FDA-MIMO Radar for Target Localization\",\"authors\":\"Lan Lan;Kunkun Li;Jingwei Xu;Guisheng Liao;Hing Cheung So\",\"doi\":\"10.1109/LSP.2025.3580319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents an optimization approach for frequency increments tailored to Frequency Diverse Array (FDA)-Multiple-Input Multiple-Output (MIMO) radar for target localization. We start to formulate the problem as minimizing the Cramér-Rao Bounds (CRBs) for both range and angle estimation, subject to practical constraints on the frequency increments. To facilitate optimization, the objective function is mathematically transformed, which results in a maximization problem, leveraging its inherent non-negativity of both the numerator and denominator. To address the resultant non-convex and NP-hard optimization problem, a Minorization-Maximization (MM)-Maximum Block Improvement (MBI) algorithm is devised by partitioning the frequency increment vector into distinct blocks, allowing for alternating maximization. In particular, each frequency increment is refined with the MM algorithm, while holding the others fixed, and only the block yielding the maximum objective increment is updated within each iteration. Simulation results are provided to demonstrate the excellent target localization of our proposed approach.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"2529-2533\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11037509/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11037509/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种针对频率变化阵列(FDA)-多输入多输出(MIMO)雷达的频率增量优化方法,用于目标定位。我们开始将问题表述为最小化距离和角度估计的cram r- rao边界(crb),并受到频率增量的实际约束。为了便于优化,对目标函数进行数学变换,利用其固有的分子和分母的非负性,产生最大化问题。为了解决由此产生的非凸和NP-hard优化问题,设计了一种最小化-最大化(MM)-最大块改进(MBI)算法,通过将频率增量向量划分为不同的块,允许交替最大化。特别是,使用MM算法对每个频率增量进行细化,同时保持其他频率增量不变,并且在每次迭代中仅更新产生最大目标增量的块。仿真结果表明,该方法具有良好的目标定位效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Increment Optimization With FDA-MIMO Radar for Target Localization
This letter presents an optimization approach for frequency increments tailored to Frequency Diverse Array (FDA)-Multiple-Input Multiple-Output (MIMO) radar for target localization. We start to formulate the problem as minimizing the Cramér-Rao Bounds (CRBs) for both range and angle estimation, subject to practical constraints on the frequency increments. To facilitate optimization, the objective function is mathematically transformed, which results in a maximization problem, leveraging its inherent non-negativity of both the numerator and denominator. To address the resultant non-convex and NP-hard optimization problem, a Minorization-Maximization (MM)-Maximum Block Improvement (MBI) algorithm is devised by partitioning the frequency increment vector into distinct blocks, allowing for alternating maximization. In particular, each frequency increment is refined with the MM algorithm, while holding the others fixed, and only the block yielding the maximum objective increment is updated within each iteration. Simulation results are provided to demonstrate the excellent target localization of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信