Gael Tenkeu Kembang , Yannick Léa Tenkeu Jeufack , Etienne Romuald Temgoua Alomo , Leonard Kwuida
{"title":"二重布尔代数:构造、子结构和态射","authors":"Gael Tenkeu Kembang , Yannick Léa Tenkeu Jeufack , Etienne Romuald Temgoua Alomo , Leonard Kwuida","doi":"10.1016/j.ijar.2025.109519","DOIUrl":null,"url":null,"abstract":"<div><div>Double Boolean algebras are algebras <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder><mo>:</mo><mo>=</mo><mo>(</mo><mi>D</mi><mo>;</mo><mo>⊓</mo><mo>,</mo><mo>⊔</mo><mo>,</mo><mo>¬</mo><mo>,</mo><mo>⌟</mo><mo>,</mo><mo>⊥</mo><mo>,</mo><mo>⊤</mo><mo>)</mo></math></span> of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts. Every double Boolean algebra <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> contains two Boolean algebras: <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span>. Three main goals are achieved in this paper. First we characterize sub-algebras of a double Boolean algebra <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> as join sets of sub-algebras of the Boolean algebras <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and a subset of <span><math><mi>D</mi><mo>﹨</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> (where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>⊓</mo></mrow></msub><mo>∪</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>⊔</mo></mrow></msub></math></span>) satisfying certain conditions. Second, we characterize homomorphisms between two double Boolean algebras <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> and <span><math><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></math></span> by homomorphisms between the Boolean algebras <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span>, <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and maps between <span><math><mi>D</mi><mo>﹨</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <em>E</em> satisfying certain conditions. Third, we give some tools to construct some classes of pure double Boolean algebras.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"186 ","pages":"Article 109519"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double Boolean algebras: Constructions, sub-structures and morphisms\",\"authors\":\"Gael Tenkeu Kembang , Yannick Léa Tenkeu Jeufack , Etienne Romuald Temgoua Alomo , Leonard Kwuida\",\"doi\":\"10.1016/j.ijar.2025.109519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Double Boolean algebras are algebras <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder><mo>:</mo><mo>=</mo><mo>(</mo><mi>D</mi><mo>;</mo><mo>⊓</mo><mo>,</mo><mo>⊔</mo><mo>,</mo><mo>¬</mo><mo>,</mo><mo>⌟</mo><mo>,</mo><mo>⊥</mo><mo>,</mo><mo>⊤</mo><mo>)</mo></math></span> of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts. Every double Boolean algebra <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> contains two Boolean algebras: <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span>. Three main goals are achieved in this paper. First we characterize sub-algebras of a double Boolean algebra <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> as join sets of sub-algebras of the Boolean algebras <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and a subset of <span><math><mi>D</mi><mo>﹨</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> (where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>⊓</mo></mrow></msub><mo>∪</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>⊔</mo></mrow></msub></math></span>) satisfying certain conditions. Second, we characterize homomorphisms between two double Boolean algebras <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> and <span><math><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></math></span> by homomorphisms between the Boolean algebras <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span>, <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and maps between <span><math><mi>D</mi><mo>﹨</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <em>E</em> satisfying certain conditions. Third, we give some tools to construct some classes of pure double Boolean algebras.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"186 \",\"pages\":\"Article 109519\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001604\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001604","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Double Boolean algebras: Constructions, sub-structures and morphisms
Double Boolean algebras are algebras of type introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts. Every double Boolean algebra contains two Boolean algebras: and . Three main goals are achieved in this paper. First we characterize sub-algebras of a double Boolean algebra as join sets of sub-algebras of the Boolean algebras and and a subset of (where ) satisfying certain conditions. Second, we characterize homomorphisms between two double Boolean algebras and by homomorphisms between the Boolean algebras and , and and maps between and E satisfying certain conditions. Third, we give some tools to construct some classes of pure double Boolean algebras.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.