二重布尔代数:构造、子结构和态射

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gael Tenkeu Kembang , Yannick Léa Tenkeu Jeufack , Etienne Romuald Temgoua Alomo , Leonard Kwuida
{"title":"二重布尔代数:构造、子结构和态射","authors":"Gael Tenkeu Kembang ,&nbsp;Yannick Léa Tenkeu Jeufack ,&nbsp;Etienne Romuald Temgoua Alomo ,&nbsp;Leonard Kwuida","doi":"10.1016/j.ijar.2025.109519","DOIUrl":null,"url":null,"abstract":"<div><div>Double Boolean algebras are algebras <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder><mo>:</mo><mo>=</mo><mo>(</mo><mi>D</mi><mo>;</mo><mo>⊓</mo><mo>,</mo><mo>⊔</mo><mo>,</mo><mo>¬</mo><mo>,</mo><mo>⌟</mo><mo>,</mo><mo>⊥</mo><mo>,</mo><mo>⊤</mo><mo>)</mo></math></span> of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts. Every double Boolean algebra <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> contains two Boolean algebras: <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span>. Three main goals are achieved in this paper. First we characterize sub-algebras of a double Boolean algebra <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> as join sets of sub-algebras of the Boolean algebras <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and a subset of <span><math><mi>D</mi><mo>﹨</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> (where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>⊓</mo></mrow></msub><mo>∪</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>⊔</mo></mrow></msub></math></span>) satisfying certain conditions. Second, we characterize homomorphisms between two double Boolean algebras <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> and <span><math><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></math></span> by homomorphisms between the Boolean algebras <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span>, <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and maps between <span><math><mi>D</mi><mo>﹨</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <em>E</em> satisfying certain conditions. Third, we give some tools to construct some classes of pure double Boolean algebras.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"186 ","pages":"Article 109519"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double Boolean algebras: Constructions, sub-structures and morphisms\",\"authors\":\"Gael Tenkeu Kembang ,&nbsp;Yannick Léa Tenkeu Jeufack ,&nbsp;Etienne Romuald Temgoua Alomo ,&nbsp;Leonard Kwuida\",\"doi\":\"10.1016/j.ijar.2025.109519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Double Boolean algebras are algebras <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder><mo>:</mo><mo>=</mo><mo>(</mo><mi>D</mi><mo>;</mo><mo>⊓</mo><mo>,</mo><mo>⊔</mo><mo>,</mo><mo>¬</mo><mo>,</mo><mo>⌟</mo><mo>,</mo><mo>⊥</mo><mo>,</mo><mo>⊤</mo><mo>)</mo></math></span> of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts. Every double Boolean algebra <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> contains two Boolean algebras: <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span>. Three main goals are achieved in this paper. First we characterize sub-algebras of a double Boolean algebra <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> as join sets of sub-algebras of the Boolean algebras <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and a subset of <span><math><mi>D</mi><mo>﹨</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> (where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>⊓</mo></mrow></msub><mo>∪</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>⊔</mo></mrow></msub></math></span>) satisfying certain conditions. Second, we characterize homomorphisms between two double Boolean algebras <span><math><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></math></span> and <span><math><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></math></span> by homomorphisms between the Boolean algebras <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊓</mo></mrow></msub></math></span>, <span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and <span><math><msub><mrow><munder><mrow><mi>E</mi></mrow><mo>_</mo></munder></mrow><mrow><mo>⊔</mo></mrow></msub></math></span> and maps between <span><math><mi>D</mi><mo>﹨</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <em>E</em> satisfying certain conditions. Third, we give some tools to construct some classes of pure double Boolean algebras.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"186 \",\"pages\":\"Article 109519\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001604\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001604","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

二重布尔代数是由Rudolf Wille引入的类型为(2,2,1,1,0,0)的代数D_:=(D; ,≠,¬,⌟,⊥,⊥),用于捕获原概念代数的方程理论。每一个二重布尔代数D_都包含两个布尔代数:D_≠和D_≠。本文实现了三个主要目标。首先,我们将二重布尔代数D_的子代数表征为满足一定条件的布尔代数D_ (t)和D_ (t)的子代数与D\Dp(其中Dp=D (t))的子集D\Dp的子代数的连接集。其次,通过布尔代数D_ *和E_ *、D_ *和E_ *之间的同态以及D\Dp和E之间满足一定条件的映射,刻画了两个二重布尔代数D_和E_之间的同态。第三,给出了构造纯二重布尔代数的一些工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double Boolean algebras: Constructions, sub-structures and morphisms
Double Boolean algebras are algebras D_:=(D;,,¬,,,) of type (2,2,1,1,0,0) introduced by Rudolf Wille to capture the equational theory of the algebra of protoconcepts. Every double Boolean algebra D_ contains two Boolean algebras: D_ and D_. Three main goals are achieved in this paper. First we characterize sub-algebras of a double Boolean algebra D_ as join sets of sub-algebras of the Boolean algebras D_ and D_ and a subset of DDp (where Dp=DD) satisfying certain conditions. Second, we characterize homomorphisms between two double Boolean algebras D_ and E_ by homomorphisms between the Boolean algebras D_ and E_, D_ and E_ and maps between DDp and E satisfying certain conditions. Third, we give some tools to construct some classes of pure double Boolean algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信