具有多结构扭非谐性的甲酸氢过氧甲酯低温分解动力学的理论研究

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Yaozong Duan , Fashe Li , Hua Wang
{"title":"具有多结构扭非谐性的甲酸氢过氧甲酯低温分解动力学的理论研究","authors":"Yaozong Duan ,&nbsp;Fashe Li ,&nbsp;Hua Wang","doi":"10.1016/j.chemphys.2025.112830","DOIUrl":null,"url":null,"abstract":"<div><div>Hydroperoxymethyl formate (HPMF) is an important oxidation intermediate produced during the low-temperature oxidation of dimethyl ether (DME), as its destruction pathways influence not only the low-temperature reactivity but also the formation of acid species. We theoretically studied both the Korcek and conventional decomposition reactions of HPMF via high-level quantum chemical calculation methods. The temperature-dependent rate coefficients were calculated using multistructural transition state theory with small curvature tunneling correction. Kinetic modeling results show that the Korcek decomposition mechanism plays a negligible role on the formation of formic acid but contributes to the formation of carbonic acid.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"598 ","pages":"Article 112830"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical investigation on low-temperature decomposition kinetics of hdroperoxymethyl formate with multistructural torsional anharmonicity\",\"authors\":\"Yaozong Duan ,&nbsp;Fashe Li ,&nbsp;Hua Wang\",\"doi\":\"10.1016/j.chemphys.2025.112830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydroperoxymethyl formate (HPMF) is an important oxidation intermediate produced during the low-temperature oxidation of dimethyl ether (DME), as its destruction pathways influence not only the low-temperature reactivity but also the formation of acid species. We theoretically studied both the Korcek and conventional decomposition reactions of HPMF via high-level quantum chemical calculation methods. The temperature-dependent rate coefficients were calculated using multistructural transition state theory with small curvature tunneling correction. Kinetic modeling results show that the Korcek decomposition mechanism plays a negligible role on the formation of formic acid but contributes to the formation of carbonic acid.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"598 \",\"pages\":\"Article 112830\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425002319\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002319","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

甲酸氢过氧甲酯(HPMF)是二甲醚(DME)低温氧化过程中产生的重要氧化中间体,其破坏途径不仅影响低温反应活性,而且影响酸性物质的形成。通过高阶量子化学计算方法,从理论上研究了HPMF的Korcek分解反应和常规分解反应。采用多结构过渡态理论计算了温度相关的速率系数,并进行了小曲率隧道修正。动力学模拟结果表明,Korcek分解机制对甲酸形成的作用可以忽略不计,但对碳酸的形成有促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical investigation on low-temperature decomposition kinetics of hdroperoxymethyl formate with multistructural torsional anharmonicity
Hydroperoxymethyl formate (HPMF) is an important oxidation intermediate produced during the low-temperature oxidation of dimethyl ether (DME), as its destruction pathways influence not only the low-temperature reactivity but also the formation of acid species. We theoretically studied both the Korcek and conventional decomposition reactions of HPMF via high-level quantum chemical calculation methods. The temperature-dependent rate coefficients were calculated using multistructural transition state theory with small curvature tunneling correction. Kinetic modeling results show that the Korcek decomposition mechanism plays a negligible role on the formation of formic acid but contributes to the formation of carbonic acid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信