{"title":"海藻酸盐包封对活性药物成分离子液体盐包封明胶口服微丸质量特性及贮存稳定性的影响","authors":"Liu Han Ng, Wen Yang Goh, Kunn Hadinoto","doi":"10.1016/j.partic.2025.06.008","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic liquid (IL) salts of active pharmaceutical ingredients (API) represent promising formulations for poorly-soluble APIs as they eliminate polymorphism commonly associated with conventional API salts. Being highly viscous liquid, oral dosage formulation of API-ILs is challenging, necessitating immobilization onto particulate carriers, typically by spray-drying. This study developed an alternative oral dosage formulation of API-ILs by incorporating them into soft gelatin-alginate pellets, where the alginate’s role was to improve storage stability of hygroscopic and thermally-sensitive gelatin. Poorly-soluble ibuprofen (IBU) and 1-butyl-3-methylimidazolium (BMIM) was used as the model API-IL. The impacts of alginate inclusion at varying gelatin-to-alginate ratios on quality attributes of IBU-BMIM-loaded pellets were investigated. The evaluated attributes included physical appearance, IBU-BMIM payload, dosage uniformity, flowability, IBU-BMIM release, and IBU solubility enhancement. The results showed IBU-BMIM remained in its liquid-like amorphous form upon incorporation into the pellets, thereby preserving its solubility enhancement capability, albeit at a lower degree due to slower IBU-BMIM release upon alginate inclusion. Alginate inclusion also influenced the pellets’ physical appearance, thickness, flowability, and gelatin’s secondary structures, while having minimal impacts on payload and dosage uniformity. Importantly, the pellets remained stable after one-month of accelerated storage (40 °C and 75 % relative humidity) with minimal variations in their quality attributes.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"104 ","pages":"Pages 103-114"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of alginate inclusion on quality attributes and storage stability of gelatin oral pellets encapsulating ionic liquid salt of active pharmaceutical ingredient\",\"authors\":\"Liu Han Ng, Wen Yang Goh, Kunn Hadinoto\",\"doi\":\"10.1016/j.partic.2025.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ionic liquid (IL) salts of active pharmaceutical ingredients (API) represent promising formulations for poorly-soluble APIs as they eliminate polymorphism commonly associated with conventional API salts. Being highly viscous liquid, oral dosage formulation of API-ILs is challenging, necessitating immobilization onto particulate carriers, typically by spray-drying. This study developed an alternative oral dosage formulation of API-ILs by incorporating them into soft gelatin-alginate pellets, where the alginate’s role was to improve storage stability of hygroscopic and thermally-sensitive gelatin. Poorly-soluble ibuprofen (IBU) and 1-butyl-3-methylimidazolium (BMIM) was used as the model API-IL. The impacts of alginate inclusion at varying gelatin-to-alginate ratios on quality attributes of IBU-BMIM-loaded pellets were investigated. The evaluated attributes included physical appearance, IBU-BMIM payload, dosage uniformity, flowability, IBU-BMIM release, and IBU solubility enhancement. The results showed IBU-BMIM remained in its liquid-like amorphous form upon incorporation into the pellets, thereby preserving its solubility enhancement capability, albeit at a lower degree due to slower IBU-BMIM release upon alginate inclusion. Alginate inclusion also influenced the pellets’ physical appearance, thickness, flowability, and gelatin’s secondary structures, while having minimal impacts on payload and dosage uniformity. Importantly, the pellets remained stable after one-month of accelerated storage (40 °C and 75 % relative humidity) with minimal variations in their quality attributes.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"104 \",\"pages\":\"Pages 103-114\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200125001737\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125001737","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effects of alginate inclusion on quality attributes and storage stability of gelatin oral pellets encapsulating ionic liquid salt of active pharmaceutical ingredient
Ionic liquid (IL) salts of active pharmaceutical ingredients (API) represent promising formulations for poorly-soluble APIs as they eliminate polymorphism commonly associated with conventional API salts. Being highly viscous liquid, oral dosage formulation of API-ILs is challenging, necessitating immobilization onto particulate carriers, typically by spray-drying. This study developed an alternative oral dosage formulation of API-ILs by incorporating them into soft gelatin-alginate pellets, where the alginate’s role was to improve storage stability of hygroscopic and thermally-sensitive gelatin. Poorly-soluble ibuprofen (IBU) and 1-butyl-3-methylimidazolium (BMIM) was used as the model API-IL. The impacts of alginate inclusion at varying gelatin-to-alginate ratios on quality attributes of IBU-BMIM-loaded pellets were investigated. The evaluated attributes included physical appearance, IBU-BMIM payload, dosage uniformity, flowability, IBU-BMIM release, and IBU solubility enhancement. The results showed IBU-BMIM remained in its liquid-like amorphous form upon incorporation into the pellets, thereby preserving its solubility enhancement capability, albeit at a lower degree due to slower IBU-BMIM release upon alginate inclusion. Alginate inclusion also influenced the pellets’ physical appearance, thickness, flowability, and gelatin’s secondary structures, while having minimal impacts on payload and dosage uniformity. Importantly, the pellets remained stable after one-month of accelerated storage (40 °C and 75 % relative humidity) with minimal variations in their quality attributes.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.