{"title":"基于210pb的近代沉积物测年模型。回顾","authors":"José M. Abril-Hernández","doi":"10.1016/j.jenvrad.2025.107749","DOIUrl":null,"url":null,"abstract":"<div><div>The <sup>210</sup>Pb-based dating method provides absolute ages determination in recent aquatic sediments at centennial scales. It is widely used to support a large variety of environmental studies. However, any empirical data set is compatible with an infinite number of chronologies that need to be constrained by a series of assumptions (models) on the particular sedimentary conditions of the studied environment, and validated with independent chronostratigraphic markers. During five decades, about thirty models have been developed to cope with the wide diversity of natural conditions, a good number of them appearing in recent years, along with new concepts such as model errors, attractors for χ-mapping, or kinetic reactive transport, which have changed common views and practices. This paper aims to present a comprehensive review of this dating method to provide to final users updated tools and a renewed understanding to improve the reliability of their applications. Models are classified in terms of their assumptions on the sedimentary systems, which are better understood from a revisited theory of early compaction and the description of the microcosms of saturated porous media, where composite fluxes of tracers undergo different deposition pathways in terms of physical and kinetic reactive transport. The article reviews empirical evidence on the natural variability in mass flows and initial activity concentrations. Some models allow analytical solutions, while others require numerical techniques. The review is illustrated with examples from real case studies.</div></div>","PeriodicalId":15667,"journal":{"name":"Journal of environmental radioactivity","volume":"289 ","pages":"Article 107749"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"210Pb-based dating models for recent sediments. A review\",\"authors\":\"José M. Abril-Hernández\",\"doi\":\"10.1016/j.jenvrad.2025.107749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <sup>210</sup>Pb-based dating method provides absolute ages determination in recent aquatic sediments at centennial scales. It is widely used to support a large variety of environmental studies. However, any empirical data set is compatible with an infinite number of chronologies that need to be constrained by a series of assumptions (models) on the particular sedimentary conditions of the studied environment, and validated with independent chronostratigraphic markers. During five decades, about thirty models have been developed to cope with the wide diversity of natural conditions, a good number of them appearing in recent years, along with new concepts such as model errors, attractors for χ-mapping, or kinetic reactive transport, which have changed common views and practices. This paper aims to present a comprehensive review of this dating method to provide to final users updated tools and a renewed understanding to improve the reliability of their applications. Models are classified in terms of their assumptions on the sedimentary systems, which are better understood from a revisited theory of early compaction and the description of the microcosms of saturated porous media, where composite fluxes of tracers undergo different deposition pathways in terms of physical and kinetic reactive transport. The article reviews empirical evidence on the natural variability in mass flows and initial activity concentrations. Some models allow analytical solutions, while others require numerical techniques. The review is illustrated with examples from real case studies.</div></div>\",\"PeriodicalId\":15667,\"journal\":{\"name\":\"Journal of environmental radioactivity\",\"volume\":\"289 \",\"pages\":\"Article 107749\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental radioactivity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0265931X25001365\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental radioactivity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0265931X25001365","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
210Pb-based dating models for recent sediments. A review
The 210Pb-based dating method provides absolute ages determination in recent aquatic sediments at centennial scales. It is widely used to support a large variety of environmental studies. However, any empirical data set is compatible with an infinite number of chronologies that need to be constrained by a series of assumptions (models) on the particular sedimentary conditions of the studied environment, and validated with independent chronostratigraphic markers. During five decades, about thirty models have been developed to cope with the wide diversity of natural conditions, a good number of them appearing in recent years, along with new concepts such as model errors, attractors for χ-mapping, or kinetic reactive transport, which have changed common views and practices. This paper aims to present a comprehensive review of this dating method to provide to final users updated tools and a renewed understanding to improve the reliability of their applications. Models are classified in terms of their assumptions on the sedimentary systems, which are better understood from a revisited theory of early compaction and the description of the microcosms of saturated porous media, where composite fluxes of tracers undergo different deposition pathways in terms of physical and kinetic reactive transport. The article reviews empirical evidence on the natural variability in mass flows and initial activity concentrations. Some models allow analytical solutions, while others require numerical techniques. The review is illustrated with examples from real case studies.
期刊介绍:
The Journal of Environmental Radioactivity provides a coherent international forum for publication of original research or review papers on any aspect of the occurrence of radioactivity in natural systems.
Relevant subject areas range from applications of environmental radionuclides as mechanistic or timescale tracers of natural processes to assessments of the radioecological or radiological effects of ambient radioactivity. Papers deal with naturally occurring nuclides or with those created and released by man through nuclear weapons manufacture and testing, energy production, fuel-cycle technology, etc. Reports on radioactivity in the oceans, sediments, rivers, lakes, groundwaters, soils, atmosphere and all divisions of the biosphere are welcomed, but these should not simply be of a monitoring nature unless the data are particularly innovative.