利用二维光子晶体增强太阳能收集的高效宽带太阳能吸收器的设计

IF 2.5 3区 物理与天体物理 Q2 OPTICS
Sichuan Liu , Gang Lin , Zhao Liu , Guoliang Yin
{"title":"利用二维光子晶体增强太阳能收集的高效宽带太阳能吸收器的设计","authors":"Sichuan Liu ,&nbsp;Gang Lin ,&nbsp;Zhao Liu ,&nbsp;Guoliang Yin","doi":"10.1016/j.optcom.2025.132178","DOIUrl":null,"url":null,"abstract":"<div><div>An efficient broadband solar absorber can significantly enhance the system's solar absorption efficiency. Based on two-dimensional photonic crystal model, this article designs and proposes an efficient solar absorber, using finite-difference time-domain (FDTD) method. The complex structure of two-dimensional photonic crystals leads to multiple reflections of light waves during propagation, resulting in relatively high light absorption, making them widely used in the field of solar energy absorption. The absorber is constructed by using Ti as the substrate and periodically filling square three-dimensional cavities with SiO<sub>2</sub>. The average absorption rate achieves 94.37 %, with a weighted average absorption rate of 95.05 % under Air Mass 1.5(AM1.5) conditions (280-4000 nm). According to electric field analysis, the strong absorption of this model is mainly achieved through surface plasmon resonance absorption between SiO<sub>2</sub> solid columns and Ti substrates, as well as internal light wave interference resonance absorption in the SiO<sub>2</sub> solid column cavity.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"591 ","pages":"Article 132178"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a high-efficiency broadband solar absorber utilizing two-dimensional photonic crystals for enhanced solar energy harvesting\",\"authors\":\"Sichuan Liu ,&nbsp;Gang Lin ,&nbsp;Zhao Liu ,&nbsp;Guoliang Yin\",\"doi\":\"10.1016/j.optcom.2025.132178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An efficient broadband solar absorber can significantly enhance the system's solar absorption efficiency. Based on two-dimensional photonic crystal model, this article designs and proposes an efficient solar absorber, using finite-difference time-domain (FDTD) method. The complex structure of two-dimensional photonic crystals leads to multiple reflections of light waves during propagation, resulting in relatively high light absorption, making them widely used in the field of solar energy absorption. The absorber is constructed by using Ti as the substrate and periodically filling square three-dimensional cavities with SiO<sub>2</sub>. The average absorption rate achieves 94.37 %, with a weighted average absorption rate of 95.05 % under Air Mass 1.5(AM1.5) conditions (280-4000 nm). According to electric field analysis, the strong absorption of this model is mainly achieved through surface plasmon resonance absorption between SiO<sub>2</sub> solid columns and Ti substrates, as well as internal light wave interference resonance absorption in the SiO<sub>2</sub> solid column cavity.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"591 \",\"pages\":\"Article 132178\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825007060\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825007060","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

高效的宽带太阳能吸收器可以显著提高系统的太阳能吸收效率。本文基于二维光子晶体模型,采用时域有限差分(FDTD)方法设计并提出了一种高效的太阳能吸收体。二维光子晶体的复杂结构导致光波在传播过程中多次反射,从而产生较高的光吸收率,使其在太阳能吸收领域得到广泛应用。吸收体是由Ti作为衬底,周期性地用SiO2填充方形三维腔体构成的。平均吸收率达到94.37%,其中在空气质量1.5(AM1.5)条件下(280 ~ 4000 nm)的加权平均吸收率为95.05%。根据电场分析,该模型的强吸收主要是通过SiO2固柱与Ti衬底之间的表面等离子体共振吸收,以及SiO2固柱腔内部光波干涉共振吸收来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a high-efficiency broadband solar absorber utilizing two-dimensional photonic crystals for enhanced solar energy harvesting
An efficient broadband solar absorber can significantly enhance the system's solar absorption efficiency. Based on two-dimensional photonic crystal model, this article designs and proposes an efficient solar absorber, using finite-difference time-domain (FDTD) method. The complex structure of two-dimensional photonic crystals leads to multiple reflections of light waves during propagation, resulting in relatively high light absorption, making them widely used in the field of solar energy absorption. The absorber is constructed by using Ti as the substrate and periodically filling square three-dimensional cavities with SiO2. The average absorption rate achieves 94.37 %, with a weighted average absorption rate of 95.05 % under Air Mass 1.5(AM1.5) conditions (280-4000 nm). According to electric field analysis, the strong absorption of this model is mainly achieved through surface plasmon resonance absorption between SiO2 solid columns and Ti substrates, as well as internal light wave interference resonance absorption in the SiO2 solid column cavity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信