Andreas Arvanitoyeorgos , Yusuke Sakane , Marina Statha
{"title":"广义标志流形在SU(N)上的非自然约简爱因斯坦度量","authors":"Andreas Arvanitoyeorgos , Yusuke Sakane , Marina Statha","doi":"10.1016/j.geomphys.2025.105575","DOIUrl":null,"url":null,"abstract":"<div><div>We obtain new invariant Einstein metrics on the compact Lie group <span><math><mi>SU</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> which are not naturally reductive. This is achieved by using the generalized flag manifold <span><math><mi>G</mi><mo>/</mo><mi>K</mi><mo>=</mo><mi>SU</mi><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>×</mo><mo>⋯</mo><mo>×</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> and by taking an appropriate choice of orthogonal basis of the center of the Lie subalgebra <span><math><mi>k</mi></math></span> for <em>K</em>, which poses certain symmetry conditions to the <span><math><mi>Ad</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span>-invariant metrics of <span><math><mi>SU</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span>. We also study the isometry problem for the Einstein metrics found.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105575"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non naturally reductive Einstein metrics on SU(N) via generalized flag manifolds\",\"authors\":\"Andreas Arvanitoyeorgos , Yusuke Sakane , Marina Statha\",\"doi\":\"10.1016/j.geomphys.2025.105575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We obtain new invariant Einstein metrics on the compact Lie group <span><math><mi>SU</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> which are not naturally reductive. This is achieved by using the generalized flag manifold <span><math><mi>G</mi><mo>/</mo><mi>K</mi><mo>=</mo><mi>SU</mi><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>×</mo><mo>⋯</mo><mo>×</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> and by taking an appropriate choice of orthogonal basis of the center of the Lie subalgebra <span><math><mi>k</mi></math></span> for <em>K</em>, which poses certain symmetry conditions to the <span><math><mi>Ad</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span>-invariant metrics of <span><math><mi>SU</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span>. We also study the isometry problem for the Einstein metrics found.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"216 \",\"pages\":\"Article 105575\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001597\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001597","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Non naturally reductive Einstein metrics on SU(N) via generalized flag manifolds
We obtain new invariant Einstein metrics on the compact Lie group which are not naturally reductive. This is achieved by using the generalized flag manifold and by taking an appropriate choice of orthogonal basis of the center of the Lie subalgebra for K, which poses certain symmetry conditions to the -invariant metrics of . We also study the isometry problem for the Einstein metrics found.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity