求解非线性偏微分方程的深度后向动态规划泛化误差分析

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Du Ouyang, Jichang Xiao, Xiaoqun Wang
{"title":"求解非线性偏微分方程的深度后向动态规划泛化误差分析","authors":"Du Ouyang,&nbsp;Jichang Xiao,&nbsp;Xiaoqun Wang","doi":"10.1016/j.apnum.2025.06.013","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the application of the quasi-Monte Carlo (QMC) method in deep backward dynamic programming (DBDP) <span><span>[1]</span></span> for numerically solving high-dimensional nonlinear partial differential equations (PDEs). Our study focuses on examining the generalization error as a component of the total error in the DBDP framework, discovering that the rate of convergence for the generalization error is influenced by the choice of sampling methods. Specifically, for a given batch size <em>m</em>, the generalization error under QMC methods exhibits a convergence rate of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> can be made arbitrarily small. This rate is notably more favorable than that of the traditional Monte Carlo (MC) methods, which is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span>. Our theoretical analysis shows that the generalization error under QMC methods achieves a higher order of convergence than their MC counterparts. Numerical experiments demonstrate that QMC indeed surpasses MC in delivering solutions that are both more precise and stable.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"217 ","pages":"Pages 319-339"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization error analysis of deep backward dynamic programming for solving nonlinear PDEs\",\"authors\":\"Du Ouyang,&nbsp;Jichang Xiao,&nbsp;Xiaoqun Wang\",\"doi\":\"10.1016/j.apnum.2025.06.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the application of the quasi-Monte Carlo (QMC) method in deep backward dynamic programming (DBDP) <span><span>[1]</span></span> for numerically solving high-dimensional nonlinear partial differential equations (PDEs). Our study focuses on examining the generalization error as a component of the total error in the DBDP framework, discovering that the rate of convergence for the generalization error is influenced by the choice of sampling methods. Specifically, for a given batch size <em>m</em>, the generalization error under QMC methods exhibits a convergence rate of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> can be made arbitrarily small. This rate is notably more favorable than that of the traditional Monte Carlo (MC) methods, which is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>ε</mi></mrow></msup><mo>)</mo></math></span>. Our theoretical analysis shows that the generalization error under QMC methods achieves a higher order of convergence than their MC counterparts. Numerical experiments demonstrate that QMC indeed surpasses MC in delivering solutions that are both more precise and stable.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"217 \",\"pages\":\"Pages 319-339\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001308\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001308","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

探讨了准蒙特卡罗(QMC)方法在深度后向动态规划(DBDP)[1]中的应用,用于数值求解高维非线性偏微分方程(PDEs)。我们的研究重点是检查泛化误差作为DBDP框架中总误差的组成部分,发现泛化误差的收敛速度受到采样方法选择的影响。具体而言,对于给定的批大小m, QMC方法下的泛化误差收敛速度为0 (m−1+ε),其中ε>;0可以任意小。该速率明显优于传统的蒙特卡罗(MC)方法,即O(m−1/2+ε)。理论分析表明,QMC方法的泛化误差比MC方法具有更高的收敛阶。数值实验表明,QMC在提供更精确和稳定的解方面确实优于MC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization error analysis of deep backward dynamic programming for solving nonlinear PDEs
We explore the application of the quasi-Monte Carlo (QMC) method in deep backward dynamic programming (DBDP) [1] for numerically solving high-dimensional nonlinear partial differential equations (PDEs). Our study focuses on examining the generalization error as a component of the total error in the DBDP framework, discovering that the rate of convergence for the generalization error is influenced by the choice of sampling methods. Specifically, for a given batch size m, the generalization error under QMC methods exhibits a convergence rate of O(m1+ε), where ε>0 can be made arbitrarily small. This rate is notably more favorable than that of the traditional Monte Carlo (MC) methods, which is O(m1/2+ε). Our theoretical analysis shows that the generalization error under QMC methods achieves a higher order of convergence than their MC counterparts. Numerical experiments demonstrate that QMC indeed surpasses MC in delivering solutions that are both more precise and stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信