Mahalakshmi P. , Hannah Jeniffer I. , Nandhakumar Eswaramoorthy , Punithavelan N. , Abdullah N. Alodhayb , Khalid E. Alzahrani , Saravanan Pandiaraj , Sudharsan J.B.
{"title":"光电和热电用窄带隙双钙钛矿M2SbAuCl6 (M=Cs,K,Rb)的DFT研究","authors":"Mahalakshmi P. , Hannah Jeniffer I. , Nandhakumar Eswaramoorthy , Punithavelan N. , Abdullah N. Alodhayb , Khalid E. Alzahrani , Saravanan Pandiaraj , Sudharsan J.B.","doi":"10.1016/j.mseb.2025.118483","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, we studied the structural, mechanical, optoelectronic and transport properties of lead-free narrow band gap double perovskites <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Sb</mi><mi>Au</mi><msub><mrow><mi>Cl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>M</mi><mo>=</mo><mi>Cs</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>Rb</mi><mo>)</mo></mrow></math></span> within the realm of density functional theory. Here, two different exchange-correlation functionals such as generalized gradient approximation and Trans Blaha-modified Becke-Johnson were used for self-consistency field calculation. The mechanical analysis indicates that these double perovskites are ductile, with elastic constants satisfying the Born-Huang stability criteria. The calculated Vicker’s hardness shows that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>SbAuCl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> is harder than <span><math><mrow><msub><mrow><mi>Cs</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>SbAuCl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>Rb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>SbAuCl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. Electronic property calculations confirm the semiconducting behavior of <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Sb</mi><mi>Au</mi><msub><mrow><mi>Cl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>M</mi><mo>=</mo><mi>Cs</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>Rb</mi><mo>)</mo></mrow></math></span> with narrow band gaps around 0.2 eV(Generalized gradient approximation) and 1.1 eV(Trans Blaha-modified Becke-Johnson). We also explored optical properties including absorption coefficient, dielectric response and electrical conductivity; that well infers the absorption capability of the materials in ultraviolet and visible region. Additionally, the thermoelectric property of <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Sb</mi><mi>Au</mi><msub><mrow><mi>Cl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>M</mi><mo>=</mo><mi>Cs</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>Rb</mi><mo>)</mo></mrow></math></span> has also been studied, in which the materials exhibit high figure of merit values of 2.55, 2.27 and 2.43 at 500 K, 400 K and 400 K respectively. Our theoretical study suggests that <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Sb</mi><mi>Au</mi><msub><mrow><mi>Cl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>M</mi><mo>=</mo><mi>Cs</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>Rb</mi><mo>)</mo></mrow></math></span> are suitable candidates for both optoelectronic and thermoelectric device applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"321 ","pages":"Article 118483"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT study on narrow band gap double perovskites M2SbAuCl6 (M=Cs,K,Rb) for optoelectronic and thermoelectric applications\",\"authors\":\"Mahalakshmi P. , Hannah Jeniffer I. , Nandhakumar Eswaramoorthy , Punithavelan N. , Abdullah N. Alodhayb , Khalid E. Alzahrani , Saravanan Pandiaraj , Sudharsan J.B.\",\"doi\":\"10.1016/j.mseb.2025.118483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present study, we studied the structural, mechanical, optoelectronic and transport properties of lead-free narrow band gap double perovskites <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Sb</mi><mi>Au</mi><msub><mrow><mi>Cl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>M</mi><mo>=</mo><mi>Cs</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>Rb</mi><mo>)</mo></mrow></math></span> within the realm of density functional theory. Here, two different exchange-correlation functionals such as generalized gradient approximation and Trans Blaha-modified Becke-Johnson were used for self-consistency field calculation. The mechanical analysis indicates that these double perovskites are ductile, with elastic constants satisfying the Born-Huang stability criteria. The calculated Vicker’s hardness shows that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>SbAuCl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> is harder than <span><math><mrow><msub><mrow><mi>Cs</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>SbAuCl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>Rb</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>SbAuCl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. Electronic property calculations confirm the semiconducting behavior of <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Sb</mi><mi>Au</mi><msub><mrow><mi>Cl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>M</mi><mo>=</mo><mi>Cs</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>Rb</mi><mo>)</mo></mrow></math></span> with narrow band gaps around 0.2 eV(Generalized gradient approximation) and 1.1 eV(Trans Blaha-modified Becke-Johnson). We also explored optical properties including absorption coefficient, dielectric response and electrical conductivity; that well infers the absorption capability of the materials in ultraviolet and visible region. Additionally, the thermoelectric property of <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Sb</mi><mi>Au</mi><msub><mrow><mi>Cl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>M</mi><mo>=</mo><mi>Cs</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>Rb</mi><mo>)</mo></mrow></math></span> has also been studied, in which the materials exhibit high figure of merit values of 2.55, 2.27 and 2.43 at 500 K, 400 K and 400 K respectively. Our theoretical study suggests that <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Sb</mi><mi>Au</mi><msub><mrow><mi>Cl</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> <span><math><mrow><mo>(</mo><mi>M</mi><mo>=</mo><mi>Cs</mi><mo>,</mo><mi>K</mi><mo>,</mo><mi>Rb</mi><mo>)</mo></mrow></math></span> are suitable candidates for both optoelectronic and thermoelectric device applications.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"321 \",\"pages\":\"Article 118483\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725005070\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725005070","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
DFT study on narrow band gap double perovskites M2SbAuCl6 (M=Cs,K,Rb) for optoelectronic and thermoelectric applications
In the present study, we studied the structural, mechanical, optoelectronic and transport properties of lead-free narrow band gap double perovskites within the realm of density functional theory. Here, two different exchange-correlation functionals such as generalized gradient approximation and Trans Blaha-modified Becke-Johnson were used for self-consistency field calculation. The mechanical analysis indicates that these double perovskites are ductile, with elastic constants satisfying the Born-Huang stability criteria. The calculated Vicker’s hardness shows that is harder than and . Electronic property calculations confirm the semiconducting behavior of with narrow band gaps around 0.2 eV(Generalized gradient approximation) and 1.1 eV(Trans Blaha-modified Becke-Johnson). We also explored optical properties including absorption coefficient, dielectric response and electrical conductivity; that well infers the absorption capability of the materials in ultraviolet and visible region. Additionally, the thermoelectric property of has also been studied, in which the materials exhibit high figure of merit values of 2.55, 2.27 and 2.43 at 500 K, 400 K and 400 K respectively. Our theoretical study suggests that are suitable candidates for both optoelectronic and thermoelectric device applications.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.