多项式环上单模行完备的一个充分判据

IF 0.8 2区 数学 Q2 MATHEMATICS
Gopal Sharma, Sampat Sharma
{"title":"多项式环上单模行完备的一个充分判据","authors":"Gopal Sharma,&nbsp;Sampat Sharma","doi":"10.1016/j.jalgebra.2025.06.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we give a sufficient criterion on a commutative ring <em>A</em> of dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, such that every <span><math><mi>v</mi><mo>∈</mo><msub><mrow><mtext>Um</mtext></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo></math></span> is completable to an invertible matrix.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"682 ","pages":"Pages 672-688"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sufficient criterion about completion of unimodular rows over polynomial rings\",\"authors\":\"Gopal Sharma,&nbsp;Sampat Sharma\",\"doi\":\"10.1016/j.jalgebra.2025.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we give a sufficient criterion on a commutative ring <em>A</em> of dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, such that every <span><math><mi>v</mi><mo>∈</mo><msub><mrow><mtext>Um</mtext></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo></math></span> is completable to an invertible matrix.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"682 \",\"pages\":\"Pages 672-688\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003618\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003618","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了维数d≥2的交换环a上的一个充分判据,使得每个v∈Umd+1(a [t])对一个可逆矩阵是可补的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sufficient criterion about completion of unimodular rows over polynomial rings
In this article, we give a sufficient criterion on a commutative ring A of dimension d2, such that every vUmd+1(A[t]) is completable to an invertible matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信