{"title":"多项式环上单模行完备的一个充分判据","authors":"Gopal Sharma, Sampat Sharma","doi":"10.1016/j.jalgebra.2025.06.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we give a sufficient criterion on a commutative ring <em>A</em> of dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, such that every <span><math><mi>v</mi><mo>∈</mo><msub><mrow><mtext>Um</mtext></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo></math></span> is completable to an invertible matrix.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"682 ","pages":"Pages 672-688"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sufficient criterion about completion of unimodular rows over polynomial rings\",\"authors\":\"Gopal Sharma, Sampat Sharma\",\"doi\":\"10.1016/j.jalgebra.2025.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we give a sufficient criterion on a commutative ring <em>A</em> of dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, such that every <span><math><mi>v</mi><mo>∈</mo><msub><mrow><mtext>Um</mtext></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>[</mo><mi>t</mi><mo>]</mo><mo>)</mo></math></span> is completable to an invertible matrix.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"682 \",\"pages\":\"Pages 672-688\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003618\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003618","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.