利用单粒子红外光谱研究石墨烯量子点的化学非均质性和双发射途径

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-07-01 DOI:10.1039/D5NR01811K
Subhro Kundu, Abu Bakar Siddique, Irvin Fernando Guzmán González, Kevin Armando Rodríguez Mireles, Maritza Iveth Pérez Valverde, Nicolás Antonio Ulloa Castillo, Madhusoodanan Reghunathan, Domingo Ixcoatl García Gutiérrez, Eduardo Martínez Guerra and Mallar Ray
{"title":"利用单粒子红外光谱研究石墨烯量子点的化学非均质性和双发射途径","authors":"Subhro Kundu, Abu Bakar Siddique, Irvin Fernando Guzmán González, Kevin Armando Rodríguez Mireles, Maritza Iveth Pérez Valverde, Nicolás Antonio Ulloa Castillo, Madhusoodanan Reghunathan, Domingo Ixcoatl García Gutiérrez, Eduardo Martínez Guerra and Mallar Ray","doi":"10.1039/D5NR01811K","DOIUrl":null,"url":null,"abstract":"<p >Understanding the relationship between the local chemical structure and photoluminescence (PL) in graphene quantum dots (GQDs) and nitrogen-functionalized GQDs (N-GQDs) is critical for their advancement in optoelectronics, sensing, and bioimaging. Ensemble measurements mask the structural and functional heterogeneity intrinsic to these quasi-zero-dimensional systems. Here, we employed single-particle photo-induced force microscopy (PiFM) to chemically map individual GQDs and N-GQDs, revealing diverse surface functional groups and bonding architectures that are obscured in bulk analyses. PiFM-IR spectra correlate well with vibrational modes predicted by density functional theory (DFT) on model structures incorporating oxygen and nitrogen functionalities. While ensemble characterization techniques such as Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy support the findings of single-particle analysis, the latter offers significantly superior spatial and chemical resolution. Optical features of the GQDs and the N-GQDs show size- and chemical structure-dependent behaviour such as excitation-dependent emission thresholds and biexponential decay dynamics. These observations support a dual recombination mechanism involving band-edge-to-band-edge transitions and surface-/dopant-mediated transition pathways. By integrating these methods, we established a robust framework for connecting a structure with optical behaviour, highlighting the importance of single-particle studies for rational design of carbon-based quantum materials.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 30","pages":" 17647-17657"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling chemical heterogeneity and dual emission pathways in graphene quantum dots via single-particle infrared spectroscopy†\",\"authors\":\"Subhro Kundu, Abu Bakar Siddique, Irvin Fernando Guzmán González, Kevin Armando Rodríguez Mireles, Maritza Iveth Pérez Valverde, Nicolás Antonio Ulloa Castillo, Madhusoodanan Reghunathan, Domingo Ixcoatl García Gutiérrez, Eduardo Martínez Guerra and Mallar Ray\",\"doi\":\"10.1039/D5NR01811K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding the relationship between the local chemical structure and photoluminescence (PL) in graphene quantum dots (GQDs) and nitrogen-functionalized GQDs (N-GQDs) is critical for their advancement in optoelectronics, sensing, and bioimaging. Ensemble measurements mask the structural and functional heterogeneity intrinsic to these quasi-zero-dimensional systems. Here, we employed single-particle photo-induced force microscopy (PiFM) to chemically map individual GQDs and N-GQDs, revealing diverse surface functional groups and bonding architectures that are obscured in bulk analyses. PiFM-IR spectra correlate well with vibrational modes predicted by density functional theory (DFT) on model structures incorporating oxygen and nitrogen functionalities. While ensemble characterization techniques such as Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy support the findings of single-particle analysis, the latter offers significantly superior spatial and chemical resolution. Optical features of the GQDs and the N-GQDs show size- and chemical structure-dependent behaviour such as excitation-dependent emission thresholds and biexponential decay dynamics. These observations support a dual recombination mechanism involving band-edge-to-band-edge transitions and surface-/dopant-mediated transition pathways. By integrating these methods, we established a robust framework for connecting a structure with optical behaviour, highlighting the importance of single-particle studies for rational design of carbon-based quantum materials.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 30\",\"pages\":\" 17647-17657\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01811k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01811k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解石墨烯量子点(GQDs)和氮功能化GQDs (N-GQDs)的局部化学结构与光致发光(PL)之间的关系对于它们在光电子学、传感和生物成像方面的进步至关重要。集合测量掩盖了这些准零维系统固有的结构和功能异质性。在这里,我们使用单粒子光致力显微镜(PiFM)对单个GQDs和N-GQDs进行化学映射,揭示了在批量分析中被掩盖的不同表面官能团和键结构。PiF-IR光谱与密度泛函理论(DFT)在含氧和氮官能团的模型结构上预测的振动模式有很好的相关性。虽然拉曼光谱、x射线衍射和x射线光电子能谱等系综表征支持单粒子分析的发现,但后者提供了显着优越的空间和化学分辨率。GQDs和NGQDs的光学特性表现出与尺寸和化学结构相关的行为,如与激发相关的发射阈值和双指数衰减动力学。这些观察结果支持双重重组机制,包括带边到带边的转变和表面/掺杂剂介导的转变途径。通过整合这些方法,我们建立了一个强大的框架,将结构与光学行为联系起来,突出了单粒子研究对合理设计碳基量子材料的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unravelling chemical heterogeneity and dual emission pathways in graphene quantum dots via single-particle infrared spectroscopy†

Unravelling chemical heterogeneity and dual emission pathways in graphene quantum dots via single-particle infrared spectroscopy†

Understanding the relationship between the local chemical structure and photoluminescence (PL) in graphene quantum dots (GQDs) and nitrogen-functionalized GQDs (N-GQDs) is critical for their advancement in optoelectronics, sensing, and bioimaging. Ensemble measurements mask the structural and functional heterogeneity intrinsic to these quasi-zero-dimensional systems. Here, we employed single-particle photo-induced force microscopy (PiFM) to chemically map individual GQDs and N-GQDs, revealing diverse surface functional groups and bonding architectures that are obscured in bulk analyses. PiFM-IR spectra correlate well with vibrational modes predicted by density functional theory (DFT) on model structures incorporating oxygen and nitrogen functionalities. While ensemble characterization techniques such as Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy support the findings of single-particle analysis, the latter offers significantly superior spatial and chemical resolution. Optical features of the GQDs and the N-GQDs show size- and chemical structure-dependent behaviour such as excitation-dependent emission thresholds and biexponential decay dynamics. These observations support a dual recombination mechanism involving band-edge-to-band-edge transitions and surface-/dopant-mediated transition pathways. By integrating these methods, we established a robust framework for connecting a structure with optical behaviour, highlighting the importance of single-particle studies for rational design of carbon-based quantum materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信