电化学致动器中mxene -共价-三嗪框架界面的分子工程研究

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-01 DOI:10.1021/acsnano.5c04154
Manmatha Mahato, Sanghee Nam, Geetha Valurouthu, Hyunjoon Yoo, Mousumi Garai, Ji-Seok Kim, Woong Oh, Jawon Ha, Vipin Kumar, Chi Won Ahn*, Yury Gogotsi* and Il-Kwon Oh*, 
{"title":"电化学致动器中mxene -共价-三嗪框架界面的分子工程研究","authors":"Manmatha Mahato,&nbsp;Sanghee Nam,&nbsp;Geetha Valurouthu,&nbsp;Hyunjoon Yoo,&nbsp;Mousumi Garai,&nbsp;Ji-Seok Kim,&nbsp;Woong Oh,&nbsp;Jawon Ha,&nbsp;Vipin Kumar,&nbsp;Chi Won Ahn*,&nbsp;Yury Gogotsi* and Il-Kwon Oh*,&nbsp;","doi":"10.1021/acsnano.5c04154","DOIUrl":null,"url":null,"abstract":"<p >Developing multifunctional nanomaterials for soft electrochemical actuators and energy storage devices is crucial for advancing next-generation soft robotics, wearable electronics, and bioinspired technologies. However, existing electrode materials face fundamental trade-offs among electronic conductivity, charge storage capacity, and ion transport efficiency. Here, we report a molecularly engineered hybrid nanoarchitecture that achieves the physicochemical stabilization of MXene terminals by the <i>in situ</i> growth of 4<i>H</i>-pyran functionalized, electronically conjugated covalent-triazine frameworks (MXene-CTF). The integration of MXene and CTFs forms a synergistic active electrode for superior supercapacitors and actuators by offering significantly enlarged interactive surface areas, a well-developed network of nanoporous channels, and enhanced electrical conductivity. The MXene-CTF electrode provides an eminent energy density of 159.8 Wh kg<sup>–1</sup> at a power density of 150 W kg<sup>–1</sup> in a supercapacitor configuration with a nonaqueous ionic liquid electrolyte. Also, it achieves a bending strain of 1.1% and a blocking force of 5.8 mN, with a rapid response time of 1.4 s and a phase delay of 0.15 rad under an ultralow input potential of 0.5 V in a soft actuator configuration. This work unveils a strategy for the molecular-level synergistic integration of MXene with CTFs, offering a promising pathway for the development of high-performance energy storage and electrochemical actuation technologies.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 28","pages":"25757–25769"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Engineering of MXene-Covalent-Triazine Framework Interfaces for Electrochemical Actuators\",\"authors\":\"Manmatha Mahato,&nbsp;Sanghee Nam,&nbsp;Geetha Valurouthu,&nbsp;Hyunjoon Yoo,&nbsp;Mousumi Garai,&nbsp;Ji-Seok Kim,&nbsp;Woong Oh,&nbsp;Jawon Ha,&nbsp;Vipin Kumar,&nbsp;Chi Won Ahn*,&nbsp;Yury Gogotsi* and Il-Kwon Oh*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c04154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing multifunctional nanomaterials for soft electrochemical actuators and energy storage devices is crucial for advancing next-generation soft robotics, wearable electronics, and bioinspired technologies. However, existing electrode materials face fundamental trade-offs among electronic conductivity, charge storage capacity, and ion transport efficiency. Here, we report a molecularly engineered hybrid nanoarchitecture that achieves the physicochemical stabilization of MXene terminals by the <i>in situ</i> growth of 4<i>H</i>-pyran functionalized, electronically conjugated covalent-triazine frameworks (MXene-CTF). The integration of MXene and CTFs forms a synergistic active electrode for superior supercapacitors and actuators by offering significantly enlarged interactive surface areas, a well-developed network of nanoporous channels, and enhanced electrical conductivity. The MXene-CTF electrode provides an eminent energy density of 159.8 Wh kg<sup>–1</sup> at a power density of 150 W kg<sup>–1</sup> in a supercapacitor configuration with a nonaqueous ionic liquid electrolyte. Also, it achieves a bending strain of 1.1% and a blocking force of 5.8 mN, with a rapid response time of 1.4 s and a phase delay of 0.15 rad under an ultralow input potential of 0.5 V in a soft actuator configuration. This work unveils a strategy for the molecular-level synergistic integration of MXene with CTFs, offering a promising pathway for the development of high-performance energy storage and electrochemical actuation technologies.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 28\",\"pages\":\"25757–25769\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c04154\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c04154","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发用于软电化学致动器和储能装置的多功能纳米材料对于推进下一代软机器人、可穿戴电子产品和生物启发技术至关重要。然而,现有的电极材料面临着电子导电性、电荷存储容量和离子传输效率之间的基本权衡。在这里,我们报道了一种分子工程杂交纳米结构,通过原位生长的4h -吡喃功能化、电子共轭共价三嗪框架(MXene- ctf)实现了MXene末端的物理化学稳定。MXene和CTFs的集成通过提供显着扩大的相互作用表面积,发育良好的纳米孔通道网络和增强的导电性,形成了卓越的超级电容器和致动器的协同活性电极。MXene-CTF电极在具有非水离子液体电解质的超级电容器配置中,以150 W kg-1的功率密度提供了159.8 Wh kg-1的卓越能量密度。此外,在软执行器配置下,在0.5 V的超低输入电位下,它的弯曲应变为1.1%,阻塞力为5.8 mN,快速响应时间为1.4 s,相位延迟为0.15 rad。这项工作揭示了MXene与CTFs分子水平协同整合的策略,为高性能储能和电化学驱动技术的发展提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Engineering of MXene-Covalent-Triazine Framework Interfaces for Electrochemical Actuators

Molecular Engineering of MXene-Covalent-Triazine Framework Interfaces for Electrochemical Actuators

Developing multifunctional nanomaterials for soft electrochemical actuators and energy storage devices is crucial for advancing next-generation soft robotics, wearable electronics, and bioinspired technologies. However, existing electrode materials face fundamental trade-offs among electronic conductivity, charge storage capacity, and ion transport efficiency. Here, we report a molecularly engineered hybrid nanoarchitecture that achieves the physicochemical stabilization of MXene terminals by the in situ growth of 4H-pyran functionalized, electronically conjugated covalent-triazine frameworks (MXene-CTF). The integration of MXene and CTFs forms a synergistic active electrode for superior supercapacitors and actuators by offering significantly enlarged interactive surface areas, a well-developed network of nanoporous channels, and enhanced electrical conductivity. The MXene-CTF electrode provides an eminent energy density of 159.8 Wh kg–1 at a power density of 150 W kg–1 in a supercapacitor configuration with a nonaqueous ionic liquid electrolyte. Also, it achieves a bending strain of 1.1% and a blocking force of 5.8 mN, with a rapid response time of 1.4 s and a phase delay of 0.15 rad under an ultralow input potential of 0.5 V in a soft actuator configuration. This work unveils a strategy for the molecular-level synergistic integration of MXene with CTFs, offering a promising pathway for the development of high-performance energy storage and electrochemical actuation technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信