{"title":"黑腹果蝇光诱导昼夜节律反应的温度依赖性调节。","authors":"Yue Tian,Hailiang Li,Wenjing Ye,Xin Yuan,Xuan Guo,Fang Guo","doi":"10.1038/s44318-025-00499-w","DOIUrl":null,"url":null,"abstract":"Animals entrain their circadian rhythms to multiple external signals, such as light and temperature, which are integrated in master clock neurons to adjust circadian phases. However, the precise mechanisms underlying this process remain unclear. Here, we use in vivo two-photon calcium imaging while precisely controlling temperature to investigate how the Drosophila melanogaster circadian clock integrates light and temperature inputs in circadian neurons. We show that light responses modulate the circadian clock in central pacemaker neurons, with temperature acting as a fine-tuning mechanism to achieve optimal adaptation. Our results suggest that temperature-sensitive dorsal clock neurons DN1as regulate the light-induced firing of s-LNv circadian pacemaker neurons and release of the neuropeptide PDF through inhibitory glutamatergic signaling. Specifically, higher temperatures suppress s-LNv firing upon light exposure, while lower temperatures enhance this response. Behavioral analyses further indicate that lower temperatures accelerate phase adjustment, whereas higher temperatures decelerate them in response to new light-dark cycles. This novel mechanism of temperature-dependent modulation of circadian phase adjustment provides new insights into the adaptive strategies of animals for survival in fluctuating environments.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent modulation of light-induced circadian responses in Drosophila melanogaster.\",\"authors\":\"Yue Tian,Hailiang Li,Wenjing Ye,Xin Yuan,Xuan Guo,Fang Guo\",\"doi\":\"10.1038/s44318-025-00499-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Animals entrain their circadian rhythms to multiple external signals, such as light and temperature, which are integrated in master clock neurons to adjust circadian phases. However, the precise mechanisms underlying this process remain unclear. Here, we use in vivo two-photon calcium imaging while precisely controlling temperature to investigate how the Drosophila melanogaster circadian clock integrates light and temperature inputs in circadian neurons. We show that light responses modulate the circadian clock in central pacemaker neurons, with temperature acting as a fine-tuning mechanism to achieve optimal adaptation. Our results suggest that temperature-sensitive dorsal clock neurons DN1as regulate the light-induced firing of s-LNv circadian pacemaker neurons and release of the neuropeptide PDF through inhibitory glutamatergic signaling. Specifically, higher temperatures suppress s-LNv firing upon light exposure, while lower temperatures enhance this response. Behavioral analyses further indicate that lower temperatures accelerate phase adjustment, whereas higher temperatures decelerate them in response to new light-dark cycles. This novel mechanism of temperature-dependent modulation of circadian phase adjustment provides new insights into the adaptive strategies of animals for survival in fluctuating environments.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00499-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00499-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature-dependent modulation of light-induced circadian responses in Drosophila melanogaster.
Animals entrain their circadian rhythms to multiple external signals, such as light and temperature, which are integrated in master clock neurons to adjust circadian phases. However, the precise mechanisms underlying this process remain unclear. Here, we use in vivo two-photon calcium imaging while precisely controlling temperature to investigate how the Drosophila melanogaster circadian clock integrates light and temperature inputs in circadian neurons. We show that light responses modulate the circadian clock in central pacemaker neurons, with temperature acting as a fine-tuning mechanism to achieve optimal adaptation. Our results suggest that temperature-sensitive dorsal clock neurons DN1as regulate the light-induced firing of s-LNv circadian pacemaker neurons and release of the neuropeptide PDF through inhibitory glutamatergic signaling. Specifically, higher temperatures suppress s-LNv firing upon light exposure, while lower temperatures enhance this response. Behavioral analyses further indicate that lower temperatures accelerate phase adjustment, whereas higher temperatures decelerate them in response to new light-dark cycles. This novel mechanism of temperature-dependent modulation of circadian phase adjustment provides new insights into the adaptive strategies of animals for survival in fluctuating environments.