表面孔在光催化析氧中的关键作用。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Lian Zhang,  and , Jinlu He*, 
{"title":"表面孔在光催化析氧中的关键作用。","authors":"Lian Zhang,&nbsp; and ,&nbsp;Jinlu He*,&nbsp;","doi":"10.1021/acs.jpclett.5c01354","DOIUrl":null,"url":null,"abstract":"<p >Taking the rutile TiO<sub>2</sub>(110) surface as a prototype, we elucidate the pivotal role of surface holes in the oxygen evolution reaction (OER) through density functional theory simulations. We demonstrate that Yb doping on TiO<sub>2</sub>(110) eliminates bulk electron polarons (EPs) while it generates delocalized surface holes. These holes, synergizing with interfacial hydrogen-bond networks, drive the decomposition of adsorbed H<sub>2</sub>O into hydroxyl radicals (·OH) and H atoms, underscoring the critical function of surface holes in initiating proton-coupled electron transfer. However, the Yb-doped surface remains inactive for full OER due to insufficient hole density. In contrast, titanium vacancy (V<sub>Ti</sub>) defects not only suppress bulk EPs but also produce a higher concentration of delocalized holes. This enhanced hole density facilitates a four-step hole-mediated oxidation pathway for adsorbed H<sub>2</sub>O, enabling efficient O<sub>2</sub> evolution via lattice oxygen participation. Our findings provide atomistic insights into hole-regulated OER mechanisms and establish design principles for optimizing photocatalysts for overall water splitting.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 27","pages":"6946–6953"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pivotal Role of Surface Holes in Photocatalytic Oxygen Evolution\",\"authors\":\"Lian Zhang,&nbsp; and ,&nbsp;Jinlu He*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Taking the rutile TiO<sub>2</sub>(110) surface as a prototype, we elucidate the pivotal role of surface holes in the oxygen evolution reaction (OER) through density functional theory simulations. We demonstrate that Yb doping on TiO<sub>2</sub>(110) eliminates bulk electron polarons (EPs) while it generates delocalized surface holes. These holes, synergizing with interfacial hydrogen-bond networks, drive the decomposition of adsorbed H<sub>2</sub>O into hydroxyl radicals (·OH) and H atoms, underscoring the critical function of surface holes in initiating proton-coupled electron transfer. However, the Yb-doped surface remains inactive for full OER due to insufficient hole density. In contrast, titanium vacancy (V<sub>Ti</sub>) defects not only suppress bulk EPs but also produce a higher concentration of delocalized holes. This enhanced hole density facilitates a four-step hole-mediated oxidation pathway for adsorbed H<sub>2</sub>O, enabling efficient O<sub>2</sub> evolution via lattice oxygen participation. Our findings provide atomistic insights into hole-regulated OER mechanisms and establish design principles for optimizing photocatalysts for overall water splitting.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 27\",\"pages\":\"6946–6953\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01354\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01354","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以金红石型TiO2(110)表面为原型,通过密度泛函理论模拟,阐明了表面空穴在析氧反应(OER)中的关键作用。我们证明了在TiO2(110)上掺杂Yb可以消除大块电子极化子(EPs),同时产生离域表面空穴。这些空穴与界面氢键网络协同作用,驱动吸附的H2O分解成羟基自由基(·OH)和H原子,强调了表面空穴在引发质子耦合电子转移中的关键作用。然而,由于空穴密度不足,掺杂yb的表面在完全OER下保持非活性。相反,钛空位(VTi)缺陷不仅抑制了整体EPs,而且产生了更高浓度的离域空穴。这种增强的孔密度促进了吸附H2O的四步孔介导氧化途径,通过晶格氧参与实现了有效的O2演化。我们的研究结果为空穴调控OER机制提供了原子层面的见解,并为优化光催化剂的整体水分解建立了设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pivotal Role of Surface Holes in Photocatalytic Oxygen Evolution

Pivotal Role of Surface Holes in Photocatalytic Oxygen Evolution

Taking the rutile TiO2(110) surface as a prototype, we elucidate the pivotal role of surface holes in the oxygen evolution reaction (OER) through density functional theory simulations. We demonstrate that Yb doping on TiO2(110) eliminates bulk electron polarons (EPs) while it generates delocalized surface holes. These holes, synergizing with interfacial hydrogen-bond networks, drive the decomposition of adsorbed H2O into hydroxyl radicals (·OH) and H atoms, underscoring the critical function of surface holes in initiating proton-coupled electron transfer. However, the Yb-doped surface remains inactive for full OER due to insufficient hole density. In contrast, titanium vacancy (VTi) defects not only suppress bulk EPs but also produce a higher concentration of delocalized holes. This enhanced hole density facilitates a four-step hole-mediated oxidation pathway for adsorbed H2O, enabling efficient O2 evolution via lattice oxygen participation. Our findings provide atomistic insights into hole-regulated OER mechanisms and establish design principles for optimizing photocatalysts for overall water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信