{"title":"固体氧化物电池中多用途钙钛矿的原位纳米工程表面重建","authors":"Boshen Xu, Jiufeng Ruan, Pengxi Zhu, Sidong Lei, Hanping Ding, Pei Dong","doi":"10.1016/j.checat.2025.101432","DOIUrl":null,"url":null,"abstract":"Renewable energy conversion is pivotal for decarbonization via a carbon-neutral energy cycle. Solid oxide cells (SOCs) offer efficient energy conversion for power generation, hydrogen production, and CO<sub>2</sub> electrolysis. These devices benefit from favorable thermodynamic and catalytic mechanisms enabled by high-temperature operation. Perovskite oxides are key SOC catalysts due to their tunable lattice structures, which influence electronic properties, defect chemistry, and catalytic activity. Perovskite surface reconstruction attracts much attention as a critical strategy to enhance reaction kinetics by tailoring surface properties and improving electrode performance. This review explores the unique adaptability of perovskite oxides for surface modification, along with the relationships between lattice structures, surface characteristics, and catalytic performance. It highlights methods for atomic-level reconstruction and summarizes recent experimental and theoretical progress, offering insights for designing next-generation SOC catalysts and advancing the application of perovskite oxides in renewable energy.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"19 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface reconstruction of versatile perovskites via in situ nanoparticle engineering for solid oxide cells\",\"authors\":\"Boshen Xu, Jiufeng Ruan, Pengxi Zhu, Sidong Lei, Hanping Ding, Pei Dong\",\"doi\":\"10.1016/j.checat.2025.101432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy conversion is pivotal for decarbonization via a carbon-neutral energy cycle. Solid oxide cells (SOCs) offer efficient energy conversion for power generation, hydrogen production, and CO<sub>2</sub> electrolysis. These devices benefit from favorable thermodynamic and catalytic mechanisms enabled by high-temperature operation. Perovskite oxides are key SOC catalysts due to their tunable lattice structures, which influence electronic properties, defect chemistry, and catalytic activity. Perovskite surface reconstruction attracts much attention as a critical strategy to enhance reaction kinetics by tailoring surface properties and improving electrode performance. This review explores the unique adaptability of perovskite oxides for surface modification, along with the relationships between lattice structures, surface characteristics, and catalytic performance. It highlights methods for atomic-level reconstruction and summarizes recent experimental and theoretical progress, offering insights for designing next-generation SOC catalysts and advancing the application of perovskite oxides in renewable energy.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2025.101432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Surface reconstruction of versatile perovskites via in situ nanoparticle engineering for solid oxide cells
Renewable energy conversion is pivotal for decarbonization via a carbon-neutral energy cycle. Solid oxide cells (SOCs) offer efficient energy conversion for power generation, hydrogen production, and CO2 electrolysis. These devices benefit from favorable thermodynamic and catalytic mechanisms enabled by high-temperature operation. Perovskite oxides are key SOC catalysts due to their tunable lattice structures, which influence electronic properties, defect chemistry, and catalytic activity. Perovskite surface reconstruction attracts much attention as a critical strategy to enhance reaction kinetics by tailoring surface properties and improving electrode performance. This review explores the unique adaptability of perovskite oxides for surface modification, along with the relationships between lattice structures, surface characteristics, and catalytic performance. It highlights methods for atomic-level reconstruction and summarizes recent experimental and theoretical progress, offering insights for designing next-generation SOC catalysts and advancing the application of perovskite oxides in renewable energy.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.