无标签高维肿瘤异质性分析的空间微流控全息集成平台

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiayi Shi, Huijing Teng, Ziyi Zhang, Yanping Liu, Dan Gao, Jianglei Di, Zijian Yang, Ping Su, Ying Tan, Jianshe Ma
{"title":"无标签高维肿瘤异质性分析的空间微流控全息集成平台","authors":"Jiayi Shi, Huijing Teng, Ziyi Zhang, Yanping Liu, Dan Gao, Jianglei Di, Zijian Yang, Ping Su, Ying Tan, Jianshe Ma","doi":"10.1038/s41467-025-60897-w","DOIUrl":null,"url":null,"abstract":"<p>The combination of quantitative phase microscopy (QPM) with imaging flow cytometry (IFC) enables label-free and multi-parameter single-cell analysis. Here, we present a simple yet powerful QPM-IFC platform, the spatial microfluidic holographic integrated (SMHI) platform, which uniquely integrates spatial hydrodynamic focusing microfluidics with digital holographic microscopy (DHM) to achieve high-fidelity single-cell QPM reconstruction without digital refocusing in 0.34 seconds, accounting for only 4.41% of the typical process ( ~ 7.71 seconds). We develop a high-dimensional phase feature hierarchy and implement a maximun-relevance and minimun-redundancy incremental feature selection (MRMR-IFS) strategy, which effectively addresses feature redundancy and constructs the optimal feature set. Consequently, a prediction accuracy of &gt;99.9% is achieved across multiple cancer cell types, breast cancer subtypes, and blood cells, demonstrating its efficacy in analyzing highly heterogeneous cell populations. Notably, this system also exhibits high accuracy in analyzing simulated blood samples, highlighting its great potential in practical applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"44 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial microfluidic holographic integrated platform for label-free and high-dimensional analysis of cancer heterogeneity\",\"authors\":\"Jiayi Shi, Huijing Teng, Ziyi Zhang, Yanping Liu, Dan Gao, Jianglei Di, Zijian Yang, Ping Su, Ying Tan, Jianshe Ma\",\"doi\":\"10.1038/s41467-025-60897-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The combination of quantitative phase microscopy (QPM) with imaging flow cytometry (IFC) enables label-free and multi-parameter single-cell analysis. Here, we present a simple yet powerful QPM-IFC platform, the spatial microfluidic holographic integrated (SMHI) platform, which uniquely integrates spatial hydrodynamic focusing microfluidics with digital holographic microscopy (DHM) to achieve high-fidelity single-cell QPM reconstruction without digital refocusing in 0.34 seconds, accounting for only 4.41% of the typical process ( ~ 7.71 seconds). We develop a high-dimensional phase feature hierarchy and implement a maximun-relevance and minimun-redundancy incremental feature selection (MRMR-IFS) strategy, which effectively addresses feature redundancy and constructs the optimal feature set. Consequently, a prediction accuracy of &gt;99.9% is achieved across multiple cancer cell types, breast cancer subtypes, and blood cells, demonstrating its efficacy in analyzing highly heterogeneous cell populations. Notably, this system also exhibits high accuracy in analyzing simulated blood samples, highlighting its great potential in practical applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60897-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60897-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

定量相显微镜(QPM)与成像流式细胞术(IFC)的结合使无标记和多参数单细胞分析成为可能。在这里,我们提出了一个简单而强大的QPM- ifc平台,即空间微流体全息集成(SMHI)平台,该平台独特地将空间流体动力聚焦微流体与数字全息显微镜(DHM)相结合,在0.34秒内实现了高保真的单细胞QPM重建,而无需数字重新聚焦,仅占典型过程(~ 7.71秒)的4.41%。建立了高维相位特征层次结构,实现了最大相关最小冗余增量特征选择(MRMR-IFS)策略,有效地解决了特征冗余问题,构建了最优特征集。因此,在多种癌症细胞类型、乳腺癌亚型和血细胞中实现了99.9%的预测精度,证明了其在分析高度异质性细胞群方面的有效性。值得注意的是,该系统在分析模拟血液样本方面也表现出很高的准确性,突出了其在实际应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatial microfluidic holographic integrated platform for label-free and high-dimensional analysis of cancer heterogeneity

Spatial microfluidic holographic integrated platform for label-free and high-dimensional analysis of cancer heterogeneity

The combination of quantitative phase microscopy (QPM) with imaging flow cytometry (IFC) enables label-free and multi-parameter single-cell analysis. Here, we present a simple yet powerful QPM-IFC platform, the spatial microfluidic holographic integrated (SMHI) platform, which uniquely integrates spatial hydrodynamic focusing microfluidics with digital holographic microscopy (DHM) to achieve high-fidelity single-cell QPM reconstruction without digital refocusing in 0.34 seconds, accounting for only 4.41% of the typical process ( ~ 7.71 seconds). We develop a high-dimensional phase feature hierarchy and implement a maximun-relevance and minimun-redundancy incremental feature selection (MRMR-IFS) strategy, which effectively addresses feature redundancy and constructs the optimal feature set. Consequently, a prediction accuracy of >99.9% is achieved across multiple cancer cell types, breast cancer subtypes, and blood cells, demonstrating its efficacy in analyzing highly heterogeneous cell populations. Notably, this system also exhibits high accuracy in analyzing simulated blood samples, highlighting its great potential in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信