通过杂环异构体调节共价有机框架的电子结构,实现高效光催化生成H2O2

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yujun Ju, Hailong Lin, Guoying Tan, Pingru Su, Zhe Wang, Chenjia Hu, Ruien Hou, Tinglong Hao, Fengjuan Chen, Yu Tang
{"title":"通过杂环异构体调节共价有机框架的电子结构,实现高效光催化生成H2O2","authors":"Yujun Ju, Hailong Lin, Guoying Tan, Pingru Su, Zhe Wang, Chenjia Hu, Ruien Hou, Tinglong Hao, Fengjuan Chen, Yu Tang","doi":"10.1038/s41467-025-60960-6","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic frameworks (COFs) are promising materials for photocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production. However, optimizing their electronic structures to enhance charge separation, oxygen adsorption, and reaction efficiency remains a challenge. Here we show that incorporating thiophene and furan isomeric units into the side chains of COFs enables precise tuning of their electronic structures and photocatalytic activity. Thiophene-containing frameworks exhibit superior charge separation and photocatalytic performance compared to those with furan, owing to stronger donor–acceptor interactions. A 2-substituted thiophene-based COF (DT<sub>2</sub>TA-TAPB), synthesized from 1,3,5-tris(4-aminophenyl)benzene and 2,5-di(thiophen-2-yl)terephthalaldehyde, exhibits reduced exciton binding energy, extended electron lifetime, and improved spatial charge separation. Mechanistic analysis reveals that the sulfur and adjacent carbon atoms within the thiophene of DT<sub>2</sub>TA-TAPB stabilize the endoperoxide intermediate, promoting a one-step, two-electron pathway for H<sub>2</sub>O<sub>2</sub> generation. Consequently, DT<sub>2</sub>TA-TAPB achieves H<sub>2</sub>O<sub>2</sub> yields of 10972 and 8587 μmol g<sup>-1</sup> h<sup>-1</sup> in 10% ethanol and pure water, respectively, outperforming most reported COF-based photocatalysts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating the electronic structure of covalent organic frameworks via heterocyclic isomers for highly efficient photocatalytic H2O2 generation\",\"authors\":\"Yujun Ju, Hailong Lin, Guoying Tan, Pingru Su, Zhe Wang, Chenjia Hu, Ruien Hou, Tinglong Hao, Fengjuan Chen, Yu Tang\",\"doi\":\"10.1038/s41467-025-60960-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covalent organic frameworks (COFs) are promising materials for photocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production. However, optimizing their electronic structures to enhance charge separation, oxygen adsorption, and reaction efficiency remains a challenge. Here we show that incorporating thiophene and furan isomeric units into the side chains of COFs enables precise tuning of their electronic structures and photocatalytic activity. Thiophene-containing frameworks exhibit superior charge separation and photocatalytic performance compared to those with furan, owing to stronger donor–acceptor interactions. A 2-substituted thiophene-based COF (DT<sub>2</sub>TA-TAPB), synthesized from 1,3,5-tris(4-aminophenyl)benzene and 2,5-di(thiophen-2-yl)terephthalaldehyde, exhibits reduced exciton binding energy, extended electron lifetime, and improved spatial charge separation. Mechanistic analysis reveals that the sulfur and adjacent carbon atoms within the thiophene of DT<sub>2</sub>TA-TAPB stabilize the endoperoxide intermediate, promoting a one-step, two-electron pathway for H<sub>2</sub>O<sub>2</sub> generation. Consequently, DT<sub>2</sub>TA-TAPB achieves H<sub>2</sub>O<sub>2</sub> yields of 10972 and 8587 μmol g<sup>-1</sup> h<sup>-1</sup> in 10% ethanol and pure water, respectively, outperforming most reported COF-based photocatalysts.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60960-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60960-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)是光催化生产过氧化氢(H2O2)的有前途的材料。然而,优化它们的电子结构以提高电荷分离、氧吸附和反应效率仍然是一个挑战。本研究表明,在COFs侧链中加入噻吩和呋喃异构体单元可以精确调整其电子结构和光催化活性。由于更强的供体-受体相互作用,与呋喃相比,含噻吩的框架具有更好的电荷分离和光催化性能。由1,3,5-三(4-氨基苯基)苯和2,5-二(噻吩-2-基)对苯二甲酸合成的2-取代噻吩基COF (DT2TA-TAPB)具有降低激子结合能、延长电子寿命和改善空间电荷分离的特点。机理分析表明,DT2TA-TAPB中噻吩内的硫原子和相邻的碳原子稳定了内过氧化物中间体,促进了一步双电子生成H2O2的途径。结果表明,在10%乙醇和纯水条件下,DT2TA-TAPB的H2O2产率分别为10972 μmol g-1 h-1和8587 μmol g-1 h-1,优于目前报道的cof基光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulating the electronic structure of covalent organic frameworks via heterocyclic isomers for highly efficient photocatalytic H2O2 generation

Regulating the electronic structure of covalent organic frameworks via heterocyclic isomers for highly efficient photocatalytic H2O2 generation

Covalent organic frameworks (COFs) are promising materials for photocatalytic hydrogen peroxide (H2O2) production. However, optimizing their electronic structures to enhance charge separation, oxygen adsorption, and reaction efficiency remains a challenge. Here we show that incorporating thiophene and furan isomeric units into the side chains of COFs enables precise tuning of their electronic structures and photocatalytic activity. Thiophene-containing frameworks exhibit superior charge separation and photocatalytic performance compared to those with furan, owing to stronger donor–acceptor interactions. A 2-substituted thiophene-based COF (DT2TA-TAPB), synthesized from 1,3,5-tris(4-aminophenyl)benzene and 2,5-di(thiophen-2-yl)terephthalaldehyde, exhibits reduced exciton binding energy, extended electron lifetime, and improved spatial charge separation. Mechanistic analysis reveals that the sulfur and adjacent carbon atoms within the thiophene of DT2TA-TAPB stabilize the endoperoxide intermediate, promoting a one-step, two-electron pathway for H2O2 generation. Consequently, DT2TA-TAPB achieves H2O2 yields of 10972 and 8587 μmol g-1 h-1 in 10% ethanol and pure water, respectively, outperforming most reported COF-based photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信