Yuheng Li, Lin Li, Haipeng Zeng, Chunxiang Lan, Shaomin Yang, Ziwei Zheng, Miaomiao Zeng, Yingying Shi, Kai Gao, Lianmeng Cui, Rui Guo, Jing Guo, Bin Hu, Yaoguang Rong, Haibing Xie, Xiong Li
{"title":"提高钙钛矿太阳能电池效率和稳定性的交联多功能双层聚合物缓冲液","authors":"Yuheng Li, Lin Li, Haipeng Zeng, Chunxiang Lan, Shaomin Yang, Ziwei Zheng, Miaomiao Zeng, Yingying Shi, Kai Gao, Lianmeng Cui, Rui Guo, Jing Guo, Bin Hu, Yaoguang Rong, Haibing Xie, Xiong Li","doi":"10.1038/s41467-025-61294-z","DOIUrl":null,"url":null,"abstract":"<p>Addressing the stability challenges induced by the chemical interactions between metal electrodes and perovskite components is essential for high-performance perovskite solar cells (PSCs). Herein, we design a bilayer multifunctional polymer buffer composed of polyethyleneimine (PEI) and 2-((2-methyl-3-(2-((2-methylbutanoyl)oxy)ethoxy)−3-oxopropyl)thio)−3-(methylthio)succinic acid (PDMEA), inserting into the interface of metal electrode/transporting layer. This buffer mitigates metal atom diffusion by forming thioether-metal-carboxyl chelation rings between the metal layer and PDMEA. Additionally, it facilitates efficient electron transport and suppresses interfacial recombination through an in-situ cross-linking between the carboxyl groups of PDMEA and the amine groups of PEI based on Lewis acid-base reaction. Consequently, this design effectively reduces undesirable metal/ion interdiffusion during device fabrication and operation. The resulting PSCs with the PEI/PDMEA buffer achieve certified power conversion efficiencies (PCEs) of 26.46% (0.1 cm<sup>2</sup>) and 24.70% (1.01 cm<sup>2</sup>), demonstrating enhanced thermal and operational stability. We anticipate that this buffer design strategy, which forms bilayer polymer buffers via cross-linking of polymers with distinct functionalities, will inspire the rational design of robust buffers for highly efficient and stable PSCs and other electronic devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-linked multifunctional bilayer polymer buffer for enhanced efficiency and stability in perovskite solar cells\",\"authors\":\"Yuheng Li, Lin Li, Haipeng Zeng, Chunxiang Lan, Shaomin Yang, Ziwei Zheng, Miaomiao Zeng, Yingying Shi, Kai Gao, Lianmeng Cui, Rui Guo, Jing Guo, Bin Hu, Yaoguang Rong, Haibing Xie, Xiong Li\",\"doi\":\"10.1038/s41467-025-61294-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Addressing the stability challenges induced by the chemical interactions between metal electrodes and perovskite components is essential for high-performance perovskite solar cells (PSCs). Herein, we design a bilayer multifunctional polymer buffer composed of polyethyleneimine (PEI) and 2-((2-methyl-3-(2-((2-methylbutanoyl)oxy)ethoxy)−3-oxopropyl)thio)−3-(methylthio)succinic acid (PDMEA), inserting into the interface of metal electrode/transporting layer. This buffer mitigates metal atom diffusion by forming thioether-metal-carboxyl chelation rings between the metal layer and PDMEA. Additionally, it facilitates efficient electron transport and suppresses interfacial recombination through an in-situ cross-linking between the carboxyl groups of PDMEA and the amine groups of PEI based on Lewis acid-base reaction. Consequently, this design effectively reduces undesirable metal/ion interdiffusion during device fabrication and operation. The resulting PSCs with the PEI/PDMEA buffer achieve certified power conversion efficiencies (PCEs) of 26.46% (0.1 cm<sup>2</sup>) and 24.70% (1.01 cm<sup>2</sup>), demonstrating enhanced thermal and operational stability. We anticipate that this buffer design strategy, which forms bilayer polymer buffers via cross-linking of polymers with distinct functionalities, will inspire the rational design of robust buffers for highly efficient and stable PSCs and other electronic devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61294-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61294-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cross-linked multifunctional bilayer polymer buffer for enhanced efficiency and stability in perovskite solar cells
Addressing the stability challenges induced by the chemical interactions between metal electrodes and perovskite components is essential for high-performance perovskite solar cells (PSCs). Herein, we design a bilayer multifunctional polymer buffer composed of polyethyleneimine (PEI) and 2-((2-methyl-3-(2-((2-methylbutanoyl)oxy)ethoxy)−3-oxopropyl)thio)−3-(methylthio)succinic acid (PDMEA), inserting into the interface of metal electrode/transporting layer. This buffer mitigates metal atom diffusion by forming thioether-metal-carboxyl chelation rings between the metal layer and PDMEA. Additionally, it facilitates efficient electron transport and suppresses interfacial recombination through an in-situ cross-linking between the carboxyl groups of PDMEA and the amine groups of PEI based on Lewis acid-base reaction. Consequently, this design effectively reduces undesirable metal/ion interdiffusion during device fabrication and operation. The resulting PSCs with the PEI/PDMEA buffer achieve certified power conversion efficiencies (PCEs) of 26.46% (0.1 cm2) and 24.70% (1.01 cm2), demonstrating enhanced thermal and operational stability. We anticipate that this buffer design strategy, which forms bilayer polymer buffers via cross-linking of polymers with distinct functionalities, will inspire the rational design of robust buffers for highly efficient and stable PSCs and other electronic devices.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.