用于稳定全固态电池锂金属阳极界面的Li2ZnSb夹层

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Garam Kim, Jeong-Myeong Yoon, Youngoh Kim, Ji-Hyun Yu, Chul-Ho Lee, Taekyeong Kim, Young-Woon Byeon, Yun-Chae Jung, Hyeonjin Cho, Heetaek Park, Jeong-Hee Choi*, Yoon-Cheol Ha*, Cheol-Min Park* and Ki-Hun Nam*, 
{"title":"用于稳定全固态电池锂金属阳极界面的Li2ZnSb夹层","authors":"Garam Kim,&nbsp;Jeong-Myeong Yoon,&nbsp;Youngoh Kim,&nbsp;Ji-Hyun Yu,&nbsp;Chul-Ho Lee,&nbsp;Taekyeong Kim,&nbsp;Young-Woon Byeon,&nbsp;Yun-Chae Jung,&nbsp;Hyeonjin Cho,&nbsp;Heetaek Park,&nbsp;Jeong-Hee Choi*,&nbsp;Yoon-Cheol Ha*,&nbsp;Cheol-Min Park* and Ki-Hun Nam*,&nbsp;","doi":"10.1021/acsenergylett.5c01743","DOIUrl":null,"url":null,"abstract":"<p >Li metal anodes hold great promise for next-generation all-solid-state batteries (ASSBs) due to their high energy density. However, their practical implementation is severely limited by dendrite formation and interfacial instability, leading to rapid capacity degradation and short-circuiting. In this study, we introduce a Li<sub>2</sub>ZnSb (LZS) interlayer designed to suppress dendrite growth, enhance Li-ion transport, and improve Li reversibility. Electrochemical evaluations reveal that the LZS interlayer effectively stabilizes the Li metal–solid electrolyte interface, enabling highly reversible Li plating/stripping with superior cycling retention. To demonstrate the scalability of LZS, we developed a transfer printing method, successfully fabricating sheet-type LZS-Li anodes for integration into pouch-type ASSBs. The resulting pouch cells exhibit high areal capacity, excellent rate capability, and long-term cycling stability under low external pressure. These findings highlight LZS as a transformative interface engineering strategy, bridging the gap toward the practical realization of high-energy-density and long-lasting ASSBs.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 7","pages":"3570–3579"},"PeriodicalIF":18.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li2ZnSb Interlayer for Interface Stabilization of Li Metal Anodes in All-Solid-State Batteries\",\"authors\":\"Garam Kim,&nbsp;Jeong-Myeong Yoon,&nbsp;Youngoh Kim,&nbsp;Ji-Hyun Yu,&nbsp;Chul-Ho Lee,&nbsp;Taekyeong Kim,&nbsp;Young-Woon Byeon,&nbsp;Yun-Chae Jung,&nbsp;Hyeonjin Cho,&nbsp;Heetaek Park,&nbsp;Jeong-Hee Choi*,&nbsp;Yoon-Cheol Ha*,&nbsp;Cheol-Min Park* and Ki-Hun Nam*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c01743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Li metal anodes hold great promise for next-generation all-solid-state batteries (ASSBs) due to their high energy density. However, their practical implementation is severely limited by dendrite formation and interfacial instability, leading to rapid capacity degradation and short-circuiting. In this study, we introduce a Li<sub>2</sub>ZnSb (LZS) interlayer designed to suppress dendrite growth, enhance Li-ion transport, and improve Li reversibility. Electrochemical evaluations reveal that the LZS interlayer effectively stabilizes the Li metal–solid electrolyte interface, enabling highly reversible Li plating/stripping with superior cycling retention. To demonstrate the scalability of LZS, we developed a transfer printing method, successfully fabricating sheet-type LZS-Li anodes for integration into pouch-type ASSBs. The resulting pouch cells exhibit high areal capacity, excellent rate capability, and long-term cycling stability under low external pressure. These findings highlight LZS as a transformative interface engineering strategy, bridging the gap toward the practical realization of high-energy-density and long-lasting ASSBs.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 7\",\"pages\":\"3570–3579\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01743\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01743","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂金属阳极由于其高能量密度,在下一代全固态电池(assb)中具有很大的前景。然而,它们的实际应用受到枝晶形成和界面不稳定的严重限制,导致容量迅速下降和短路。在这项研究中,我们引入了一种Li2ZnSb (LZS)中间层,旨在抑制枝晶生长,增强锂离子传输,提高锂离子的可逆性。电化学评价表明,LZS中间层有效地稳定了锂金属-固体电解质界面,实现了高可逆的锂电镀/剥离,并具有良好的循环保留能力。为了证明LZS的可扩展性,我们开发了一种转移打印方法,成功地制造了片状LZS- li阳极,用于集成到袋式assb中。所得到的袋状电池具有高面积容量,优异的速率能力和低外部压力下的长期循环稳定性。这些发现突出了LZS作为一种变革性的界面工程策略,弥合了实际实现高能量密度和持久assb的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Li2ZnSb Interlayer for Interface Stabilization of Li Metal Anodes in All-Solid-State Batteries

Li2ZnSb Interlayer for Interface Stabilization of Li Metal Anodes in All-Solid-State Batteries

Li metal anodes hold great promise for next-generation all-solid-state batteries (ASSBs) due to their high energy density. However, their practical implementation is severely limited by dendrite formation and interfacial instability, leading to rapid capacity degradation and short-circuiting. In this study, we introduce a Li2ZnSb (LZS) interlayer designed to suppress dendrite growth, enhance Li-ion transport, and improve Li reversibility. Electrochemical evaluations reveal that the LZS interlayer effectively stabilizes the Li metal–solid electrolyte interface, enabling highly reversible Li plating/stripping with superior cycling retention. To demonstrate the scalability of LZS, we developed a transfer printing method, successfully fabricating sheet-type LZS-Li anodes for integration into pouch-type ASSBs. The resulting pouch cells exhibit high areal capacity, excellent rate capability, and long-term cycling stability under low external pressure. These findings highlight LZS as a transformative interface engineering strategy, bridging the gap toward the practical realization of high-energy-density and long-lasting ASSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信