用于可见光驱动CO2光转换的定制s方案导向NiFe-LDH/Ag2S异质结

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
T. Susikumar , Harshavardhan Mohan , Manikandan Kandasamy , Brahmananda Chakraborty , Taeho Shin , M. Navaneethan , P. Justin Jesuraj
{"title":"用于可见光驱动CO2光转换的定制s方案导向NiFe-LDH/Ag2S异质结","authors":"T. Susikumar ,&nbsp;Harshavardhan Mohan ,&nbsp;Manikandan Kandasamy ,&nbsp;Brahmananda Chakraborty ,&nbsp;Taeho Shin ,&nbsp;M. Navaneethan ,&nbsp;P. Justin Jesuraj","doi":"10.1016/j.apsusc.2025.163940","DOIUrl":null,"url":null,"abstract":"<div><div>The photocatalytic carbon dioxide reduction reaction (PCRR) faces challenges such as weak light absorption and rapid electron-hole recombination in single-component photocatalysts. To overcome these limitations, a heterojunction was engineered by integrating two-dimensional nickel–iron layered double hydroxides (2D-NiFe-LDH) with zero-dimensional silver sulfide (0D-Ag<sub>2</sub>S) nanoparticles. The optimized heterostructure, NFAS15 (containing 15 wt% Ag<sub>2</sub>S), exhibits a sharp optical absorption edge, increased surface area, and enhanced porosity. Scanning tunneling microscopy (STM) confirms the migration of Ag and S into the LDH lattice, while X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) reveals incremented delocalized hydroxyl groups and superior charge transfer properties, underscoring its improved electronic and catalytic performance. Under visible light, NFAS15 achieves outstanding PCRR activity, producing carbon monoxide (CO) and methanol (CH<sub>3</sub>OH) at rates of 20.7 µmol g<sup>-1</sup> h<sup>−1</sup> and 2.9 µmol g<sup>-1</sup> h<sup>−1</sup>, respectively. It also demonstrates 88 % selectivity for CO conversion and exceptional photostability, retaining 97 % (CO) and 96 % (CH<sub>3</sub>OH) efficiency over five irradiation cycles. Transient photoluminescence studies validate reduced charge recombination, attributed to S-scheme-mediated carrier separation. Density functional theory (DFT) further reveals that NFAS15 possesses lower energy barrier along the reaction pathway compared to pristine NiFe-LDH. This work offers sustainable CO<sub>2</sub> conversion via an efficient S-scheme heterojunction NiFe-LDH/Ag<sub>2</sub>S.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"710 ","pages":"Article 163940"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored S-scheme directed NiFe-LDH/Ag2S heterojunction for visible light-driven CO2 photoconversion\",\"authors\":\"T. Susikumar ,&nbsp;Harshavardhan Mohan ,&nbsp;Manikandan Kandasamy ,&nbsp;Brahmananda Chakraborty ,&nbsp;Taeho Shin ,&nbsp;M. Navaneethan ,&nbsp;P. Justin Jesuraj\",\"doi\":\"10.1016/j.apsusc.2025.163940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The photocatalytic carbon dioxide reduction reaction (PCRR) faces challenges such as weak light absorption and rapid electron-hole recombination in single-component photocatalysts. To overcome these limitations, a heterojunction was engineered by integrating two-dimensional nickel–iron layered double hydroxides (2D-NiFe-LDH) with zero-dimensional silver sulfide (0D-Ag<sub>2</sub>S) nanoparticles. The optimized heterostructure, NFAS15 (containing 15 wt% Ag<sub>2</sub>S), exhibits a sharp optical absorption edge, increased surface area, and enhanced porosity. Scanning tunneling microscopy (STM) confirms the migration of Ag and S into the LDH lattice, while X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) reveals incremented delocalized hydroxyl groups and superior charge transfer properties, underscoring its improved electronic and catalytic performance. Under visible light, NFAS15 achieves outstanding PCRR activity, producing carbon monoxide (CO) and methanol (CH<sub>3</sub>OH) at rates of 20.7 µmol g<sup>-1</sup> h<sup>−1</sup> and 2.9 µmol g<sup>-1</sup> h<sup>−1</sup>, respectively. It also demonstrates 88 % selectivity for CO conversion and exceptional photostability, retaining 97 % (CO) and 96 % (CH<sub>3</sub>OH) efficiency over five irradiation cycles. Transient photoluminescence studies validate reduced charge recombination, attributed to S-scheme-mediated carrier separation. Density functional theory (DFT) further reveals that NFAS15 possesses lower energy barrier along the reaction pathway compared to pristine NiFe-LDH. This work offers sustainable CO<sub>2</sub> conversion via an efficient S-scheme heterojunction NiFe-LDH/Ag<sub>2</sub>S.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"710 \",\"pages\":\"Article 163940\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225016551\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225016551","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化二氧化碳还原反应(PCRR)在单组分光催化剂中面临着弱光吸收和快速电子空穴复合等挑战。为了克服这些限制,通过将二维镍铁层状双氢氧化物(2d - nfe - ldh)与零维硫化银(0D-Ag2S)纳米颗粒集成,设计了异质结。优化后的异质结构NFAS15(含15 wt% Ag2S)具有锐利的光学吸收边,表面积增加,孔隙率提高。扫描隧道显微镜(STM)证实了Ag和S向LDH晶格的迁移,而x射线光电子能谱(XPS)和电子顺磁共振(EPR)显示了增加的离域羟基和优越的电荷转移特性,强调了其改善的电子和催化性能。在可见光下,NFAS15具有出色的PCRR活性,产生一氧化碳(CO)和甲醇(CH3OH)的速率分别为20.7 µmol g-1 h -1和2.9 µmol g-1 h -1。它还表现出88 %的CO转化选择性和优异的光稳定性,在五个辐照循环中保持97 % (CO)和96 % (CH3OH)的效率。瞬态光致发光研究证实了由于s方案介导的载流子分离而减少的电荷重组。密度泛函理论(DFT)进一步揭示了NFAS15在反应途径上比原始的NiFe-LDH具有更低的能垒。这项工作通过高效的s方案异质结NiFe-LDH/Ag2S提供了可持续的二氧化碳转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailored S-scheme directed NiFe-LDH/Ag2S heterojunction for visible light-driven CO2 photoconversion

Tailored S-scheme directed NiFe-LDH/Ag2S heterojunction for visible light-driven CO2 photoconversion

Tailored S-scheme directed NiFe-LDH/Ag2S heterojunction for visible light-driven CO2 photoconversion
The photocatalytic carbon dioxide reduction reaction (PCRR) faces challenges such as weak light absorption and rapid electron-hole recombination in single-component photocatalysts. To overcome these limitations, a heterojunction was engineered by integrating two-dimensional nickel–iron layered double hydroxides (2D-NiFe-LDH) with zero-dimensional silver sulfide (0D-Ag2S) nanoparticles. The optimized heterostructure, NFAS15 (containing 15 wt% Ag2S), exhibits a sharp optical absorption edge, increased surface area, and enhanced porosity. Scanning tunneling microscopy (STM) confirms the migration of Ag and S into the LDH lattice, while X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) reveals incremented delocalized hydroxyl groups and superior charge transfer properties, underscoring its improved electronic and catalytic performance. Under visible light, NFAS15 achieves outstanding PCRR activity, producing carbon monoxide (CO) and methanol (CH3OH) at rates of 20.7 µmol g-1 h−1 and 2.9 µmol g-1 h−1, respectively. It also demonstrates 88 % selectivity for CO conversion and exceptional photostability, retaining 97 % (CO) and 96 % (CH3OH) efficiency over five irradiation cycles. Transient photoluminescence studies validate reduced charge recombination, attributed to S-scheme-mediated carrier separation. Density functional theory (DFT) further reveals that NFAS15 possesses lower energy barrier along the reaction pathway compared to pristine NiFe-LDH. This work offers sustainable CO2 conversion via an efficient S-scheme heterojunction NiFe-LDH/Ag2S.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信