多孔掺钙Al2O3具有丰富的碱性位点,用于增强发酵抗生素的水解

IF 12.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yaxuan Gao , Lili Zhang , Yu Zhang , Min Yang , Wenlin Ma
{"title":"多孔掺钙Al2O3具有丰富的碱性位点,用于增强发酵抗生素的水解","authors":"Yaxuan Gao ,&nbsp;Lili Zhang ,&nbsp;Yu Zhang ,&nbsp;Min Yang ,&nbsp;Wenlin Ma","doi":"10.1016/j.watres.2025.124138","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient elimination of antibiotics from wastewater is crucial for the stability of biological treatment systems and the safety of effluent. This study presents a heterogeneous catalytic hydrolysis system using porous calcium-doped alumina (P-Ca-Al), synthesized with ammonium chloride as a green gas template. Characterization reveals that calcium species are highly dispersed in the tetrahedral sites of alumina, forming Ca-O-Al bonds. The coexistence of surface basic sites and Lewis acid sites on P-Ca-Al was confirmed by CO<sub>2</sub> temperature-programmed desorption spectrum and pyridine adsorption infrared spectroscopy. These sites are responsible for the highly efficient hydrolysis of Erythromycin-A (Ery-A), achieving an 18-fold increase in efficiency compared to conventional NaOH aqueous solutions, with no degradation observed on solid CaO under identical conditions. The selective hydrolysis of the antibacterial functional groups of Ery-A reduces antimicrobial activity with low energy and reagent consumption. The degradation mechanism is confirmed through solvent kinetic isotope effect (KIE) investigation and identification of hydrolysis intermediates. The macrolide ring and glycosidic bond in Ery-A are hydrolyzed by proton subtraction from surface basic sites, preventing resistance gene formation as confirmed by metagenomic analysis. This work provides a possible way to selectively remove antibiotics from complex industrial wastewater.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"285 ","pages":"Article 124138"},"PeriodicalIF":12.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous Ca-doped Al2O3 with abundant basic sites for enhanced hydrolysis of fermentative antibiotics\",\"authors\":\"Yaxuan Gao ,&nbsp;Lili Zhang ,&nbsp;Yu Zhang ,&nbsp;Min Yang ,&nbsp;Wenlin Ma\",\"doi\":\"10.1016/j.watres.2025.124138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient elimination of antibiotics from wastewater is crucial for the stability of biological treatment systems and the safety of effluent. This study presents a heterogeneous catalytic hydrolysis system using porous calcium-doped alumina (P-Ca-Al), synthesized with ammonium chloride as a green gas template. Characterization reveals that calcium species are highly dispersed in the tetrahedral sites of alumina, forming Ca-O-Al bonds. The coexistence of surface basic sites and Lewis acid sites on P-Ca-Al was confirmed by CO<sub>2</sub> temperature-programmed desorption spectrum and pyridine adsorption infrared spectroscopy. These sites are responsible for the highly efficient hydrolysis of Erythromycin-A (Ery-A), achieving an 18-fold increase in efficiency compared to conventional NaOH aqueous solutions, with no degradation observed on solid CaO under identical conditions. The selective hydrolysis of the antibacterial functional groups of Ery-A reduces antimicrobial activity with low energy and reagent consumption. The degradation mechanism is confirmed through solvent kinetic isotope effect (KIE) investigation and identification of hydrolysis intermediates. The macrolide ring and glycosidic bond in Ery-A are hydrolyzed by proton subtraction from surface basic sites, preventing resistance gene formation as confirmed by metagenomic analysis. This work provides a possible way to selectively remove antibiotics from complex industrial wastewater.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"285 \",\"pages\":\"Article 124138\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425010450\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425010450","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

有效消除废水中的抗生素对生物处理系统的稳定性和出水的安全性至关重要。本研究以氯化铵为绿色气体模板,制备了多孔掺钙氧化铝(P-Ca-Al)非均相催化水解体系。表征表明,钙物种高度分散在氧化铝的四面体位点上,形成Ca-O-Al键。CO2程序升温解吸光谱和吡啶吸附红外光谱证实了P-Ca-Al表面碱性位和Lewis酸位共存。这些位点负责红霉素a (Ery-A)的高效水解,与传统的NaOH水溶液相比,效率提高了18倍,在相同条件下,固体CaO没有降解。Ery-A的抗菌官能团选择性水解降低了抗菌活性,能耗低,试剂消耗少。通过溶剂动力学同位素效应(KIE)研究和水解中间体的鉴定,确定了其降解机理。宏基因组分析证实,Ery-A的大环内酯环和糖苷键通过质子减法从表面碱性位点水解,阻止了抗性基因的形成。本研究为从复杂工业废水中选择性去除抗生素提供了一种可能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Porous Ca-doped Al2O3 with abundant basic sites for enhanced hydrolysis of fermentative antibiotics

Porous Ca-doped Al2O3 with abundant basic sites for enhanced hydrolysis of fermentative antibiotics

Porous Ca-doped Al2O3 with abundant basic sites for enhanced hydrolysis of fermentative antibiotics
Efficient elimination of antibiotics from wastewater is crucial for the stability of biological treatment systems and the safety of effluent. This study presents a heterogeneous catalytic hydrolysis system using porous calcium-doped alumina (P-Ca-Al), synthesized with ammonium chloride as a green gas template. Characterization reveals that calcium species are highly dispersed in the tetrahedral sites of alumina, forming Ca-O-Al bonds. The coexistence of surface basic sites and Lewis acid sites on P-Ca-Al was confirmed by CO2 temperature-programmed desorption spectrum and pyridine adsorption infrared spectroscopy. These sites are responsible for the highly efficient hydrolysis of Erythromycin-A (Ery-A), achieving an 18-fold increase in efficiency compared to conventional NaOH aqueous solutions, with no degradation observed on solid CaO under identical conditions. The selective hydrolysis of the antibacterial functional groups of Ery-A reduces antimicrobial activity with low energy and reagent consumption. The degradation mechanism is confirmed through solvent kinetic isotope effect (KIE) investigation and identification of hydrolysis intermediates. The macrolide ring and glycosidic bond in Ery-A are hydrolyzed by proton subtraction from surface basic sites, preventing resistance gene formation as confirmed by metagenomic analysis. This work provides a possible way to selectively remove antibiotics from complex industrial wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信