Zhixuan Luo , Huanhuan Sun , Yiming Zhao , Lingbo Ren , Fei Xu , Jian-Gan Wang
{"title":"高能可充电金属电池的分离器工程:基本原理、设计策略和观点","authors":"Zhixuan Luo , Huanhuan Sun , Yiming Zhao , Lingbo Ren , Fei Xu , Jian-Gan Wang","doi":"10.1016/j.ensm.2025.104421","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable metal batteries hold outstanding prospects for next generation energy storage technologies due to their high theoretical capacities of metal anodes. However, the formidable problems regarding rampant dendrite growth, undesirable side reactions, and unstable solid electrolyte interfaces of metal anodes dramatically incurs short cycle lifetime and high safety risk. Separator engineering has triggered massive research activities as a simple yet effective strategy to mitigate these intractable issues in recent years. Herein, we offer a critical review on the significant advances of separator engineering for rechargeable metal batteries. To start with, the fundamentals of physiochemical and electrochemical requirements for separators are outlined. Subsequent discussion is specifically devoted to comprehend the design principles of various separator strategies, including pore adjustment, interfacial functionalization, and thermomechanical modulation, and to pave an in-depth understanding of their effectiveness on the performance improvement. Finally, the existing challenges and future perspectives of separator engineering are elaborately projected towards the development and practical deployment of safe and efficient rechargeable metal batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"80 ","pages":"Article 104421"},"PeriodicalIF":20.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separator engineering for high-energy rechargeable metal batteries: fundamentals, design strategies and perspectives\",\"authors\":\"Zhixuan Luo , Huanhuan Sun , Yiming Zhao , Lingbo Ren , Fei Xu , Jian-Gan Wang\",\"doi\":\"10.1016/j.ensm.2025.104421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rechargeable metal batteries hold outstanding prospects for next generation energy storage technologies due to their high theoretical capacities of metal anodes. However, the formidable problems regarding rampant dendrite growth, undesirable side reactions, and unstable solid electrolyte interfaces of metal anodes dramatically incurs short cycle lifetime and high safety risk. Separator engineering has triggered massive research activities as a simple yet effective strategy to mitigate these intractable issues in recent years. Herein, we offer a critical review on the significant advances of separator engineering for rechargeable metal batteries. To start with, the fundamentals of physiochemical and electrochemical requirements for separators are outlined. Subsequent discussion is specifically devoted to comprehend the design principles of various separator strategies, including pore adjustment, interfacial functionalization, and thermomechanical modulation, and to pave an in-depth understanding of their effectiveness on the performance improvement. Finally, the existing challenges and future perspectives of separator engineering are elaborately projected towards the development and practical deployment of safe and efficient rechargeable metal batteries.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"80 \",\"pages\":\"Article 104421\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725004180\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725004180","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Separator engineering for high-energy rechargeable metal batteries: fundamentals, design strategies and perspectives
Rechargeable metal batteries hold outstanding prospects for next generation energy storage technologies due to their high theoretical capacities of metal anodes. However, the formidable problems regarding rampant dendrite growth, undesirable side reactions, and unstable solid electrolyte interfaces of metal anodes dramatically incurs short cycle lifetime and high safety risk. Separator engineering has triggered massive research activities as a simple yet effective strategy to mitigate these intractable issues in recent years. Herein, we offer a critical review on the significant advances of separator engineering for rechargeable metal batteries. To start with, the fundamentals of physiochemical and electrochemical requirements for separators are outlined. Subsequent discussion is specifically devoted to comprehend the design principles of various separator strategies, including pore adjustment, interfacial functionalization, and thermomechanical modulation, and to pave an in-depth understanding of their effectiveness on the performance improvement. Finally, the existing challenges and future perspectives of separator engineering are elaborately projected towards the development and practical deployment of safe and efficient rechargeable metal batteries.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.