钙离子介导的超低温锌离子水电池防冻电解质的通用策略

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiangyi Gu , Wenli Li , Guosheng Duan , Yang Wang , Jingyun Huang , Qinghua Zhang , Yang Hou , Zhizhen Ye , Jianguo Lu
{"title":"钙离子介导的超低温锌离子水电池防冻电解质的通用策略","authors":"Xiangyi Gu ,&nbsp;Wenli Li ,&nbsp;Guosheng Duan ,&nbsp;Yang Wang ,&nbsp;Jingyun Huang ,&nbsp;Qinghua Zhang ,&nbsp;Yang Hou ,&nbsp;Zhizhen Ye ,&nbsp;Jianguo Lu","doi":"10.1016/j.ensm.2025.104438","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidate for energy storage due to high safety, eco-friendliness, and low-cost. However, the operation in extreme cold environments remains a critical challenge for applications. Herein we propose a universal design strategy of anti-freezing electrolyte using Ca<sup>2+</sup> mediation for regulating hydrogen bond (HB) network and solvation structure. The Zn(ClO<sub>4</sub>)<sub>2</sub> electrolyte with CaCl<sub>2</sub> additive achieves an ultralow freezing point (-60.66 °C) and high ionic conductivity (1.79 mS cm<sup>-1</sup> at -60 °C). Molecular dynamics simulations reveal the Ca<sup>2+</sup>-induced the regulation of HBs and competitive hydration, which reduces Zn<sup>2+</sup>coordination numbers from 5.75 to 4.69. This optimization lowers energy barriers for rapid reaction kinetics, enabling long-term cycling stability (&gt;1100 h for Zn||Zn), high Coulombic efficiency (99.61 % over 600 cycles for Zn||Cu), and 70.62 % capacity retention after 350 cycles in full cells at -60 °C. Remarkably, this strategy is applicable to various systems such as Zn(ClO<sub>4</sub>)<sub>2</sub>, Zn(BF<sub>4</sub>)<sub>2</sub>, ZnCl<sub>2</sub>, and Zn(OTf)<sub>2</sub>, where freezing points drops &gt;40 °C and all achieve long-term lifespan at -55 °C. It is expected that our work provides a universal framework for ultralow-temperature energy storage.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"80 ","pages":"Article 104438"},"PeriodicalIF":20.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal strategy of Ca2+-mediated antifreeze electrolyte for ultralow-temperature aqueous Zinc-Ion batteries\",\"authors\":\"Xiangyi Gu ,&nbsp;Wenli Li ,&nbsp;Guosheng Duan ,&nbsp;Yang Wang ,&nbsp;Jingyun Huang ,&nbsp;Qinghua Zhang ,&nbsp;Yang Hou ,&nbsp;Zhizhen Ye ,&nbsp;Jianguo Lu\",\"doi\":\"10.1016/j.ensm.2025.104438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidate for energy storage due to high safety, eco-friendliness, and low-cost. However, the operation in extreme cold environments remains a critical challenge for applications. Herein we propose a universal design strategy of anti-freezing electrolyte using Ca<sup>2+</sup> mediation for regulating hydrogen bond (HB) network and solvation structure. The Zn(ClO<sub>4</sub>)<sub>2</sub> electrolyte with CaCl<sub>2</sub> additive achieves an ultralow freezing point (-60.66 °C) and high ionic conductivity (1.79 mS cm<sup>-1</sup> at -60 °C). Molecular dynamics simulations reveal the Ca<sup>2+</sup>-induced the regulation of HBs and competitive hydration, which reduces Zn<sup>2+</sup>coordination numbers from 5.75 to 4.69. This optimization lowers energy barriers for rapid reaction kinetics, enabling long-term cycling stability (&gt;1100 h for Zn||Zn), high Coulombic efficiency (99.61 % over 600 cycles for Zn||Cu), and 70.62 % capacity retention after 350 cycles in full cells at -60 °C. Remarkably, this strategy is applicable to various systems such as Zn(ClO<sub>4</sub>)<sub>2</sub>, Zn(BF<sub>4</sub>)<sub>2</sub>, ZnCl<sub>2</sub>, and Zn(OTf)<sub>2</sub>, where freezing points drops &gt;40 °C and all achieve long-term lifespan at -55 °C. It is expected that our work provides a universal framework for ultralow-temperature energy storage.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"80 \",\"pages\":\"Article 104438\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725004350\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725004350","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水锌离子电池(azib)因其高安全性、环保性和低成本而被认为是一种很有前途的储能材料。然而,在极端寒冷环境下的操作仍然是应用的关键挑战。本文提出了一种利用Ca2+调节氢键(HB)网络和溶剂化结构的抗冻电解质通用设计策略。添加了CaCl2的Zn(ClO4)2电解质具有极低的冰点(-60.66℃)和较高的离子电导率(-60℃时为1.79 mS cm-1)。分子动力学模拟表明,Ca2+诱导了HBs和竞争性水化的调节,使Zn2+配位数从5.75降低到4.69。该优化降低了快速反应动力学的能量障碍,实现了长期循环稳定性(Zn||Zn >1100 h),高库仑效率(Zn||Cu在600次循环中99.61%),以及在-60°C下满电池350次循环后的70.62%的容量保持率。值得注意的是,该策略适用于各种体系,如Zn(ClO4)2、Zn(BF4)2、ZnCl2和Zn(OTf)2,这些体系的凝固点下降超过40°C,并且在-55°C下都能实现长期使用。期望我们的工作为超低温储能提供一个通用的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Universal strategy of Ca2+-mediated antifreeze electrolyte for ultralow-temperature aqueous Zinc-Ion batteries

Universal strategy of Ca2+-mediated antifreeze electrolyte for ultralow-temperature aqueous Zinc-Ion batteries

Universal strategy of Ca2+-mediated antifreeze electrolyte for ultralow-temperature aqueous Zinc-Ion batteries
Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidate for energy storage due to high safety, eco-friendliness, and low-cost. However, the operation in extreme cold environments remains a critical challenge for applications. Herein we propose a universal design strategy of anti-freezing electrolyte using Ca2+ mediation for regulating hydrogen bond (HB) network and solvation structure. The Zn(ClO4)2 electrolyte with CaCl2 additive achieves an ultralow freezing point (-60.66 °C) and high ionic conductivity (1.79 mS cm-1 at -60 °C). Molecular dynamics simulations reveal the Ca2+-induced the regulation of HBs and competitive hydration, which reduces Zn2+coordination numbers from 5.75 to 4.69. This optimization lowers energy barriers for rapid reaction kinetics, enabling long-term cycling stability (>1100 h for Zn||Zn), high Coulombic efficiency (99.61 % over 600 cycles for Zn||Cu), and 70.62 % capacity retention after 350 cycles in full cells at -60 °C. Remarkably, this strategy is applicable to various systems such as Zn(ClO4)2, Zn(BF4)2, ZnCl2, and Zn(OTf)2, where freezing points drops >40 °C and all achieve long-term lifespan at -55 °C. It is expected that our work provides a universal framework for ultralow-temperature energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信