Aleksandra Pieńkowska , Jenin Fleischmann , Sören Drabesch , Ines Merbach , Gennuo Wang , Ulisses Rocha , Thomas Reitz , E. Marie Muehe
{"title":"长期有机施肥保护土壤原核生物免受金属胁迫,而矿物施肥则加剧了金属胁迫。","authors":"Aleksandra Pieńkowska , Jenin Fleischmann , Sören Drabesch , Ines Merbach , Gennuo Wang , Ulisses Rocha , Thomas Reitz , E. Marie Muehe","doi":"10.1016/j.envpol.2025.126747","DOIUrl":null,"url":null,"abstract":"<div><div>Metal contamination in agricultural soils threatens prokaryote dynamics essential for soil health and crop productivity. Yet, whether fertilization in the long-run affects their resilience to metals remains unclear. This study examined the biogeochemical impacts of realistically low-dose applications of cadmium, zinc, and lead in soils subjected to 119 years of non-fertilization, mineral-fertilization (NPK), organic-fertilization (manure), or combined mineral-organic fertilization. Amended metals remained in the mobile fraction with the order: mineral < unfertilized < mineral + organic < organic, mirroring the effects on soil prokaryotes. In both unfertilized and mineral-fertilized soils, 16S rRNA gene copy numbers declined by 30 % upon metal addition, but recovery timing differed: in unfertilized soil, recovery began after three days, whereas in mineral-fertilized soil, numbers declined until day seven before recovering. This coincided with an increase in metal-resistant taxa, particularly in mineral-fertilized soil, with 10 significantly affected OTUs, and to a lesser extent in unfertilized soil, with 5 affected OTUs. Carbon-, nitrogen-, and phosphorus-mining enzyme activities increased 50–100 % in mineral-fertilized soils, suggesting enhanced nutrient acquisition to mitigate metal toxicity. In contrast, organic-fertilized soil hosted stable enzymatic activities and microbial copy numbers with minimal community shifts (1 affected OTU), indicating greater resistance to metal amendment. Combined mineral-organic fertilization stabilized copy numbers and enzymatic activity upon metal amendment, but 8 OTUs were affected, including specialized nutrient cyclers, suggesting increased availability of previously adsorbed NPK cations. Our findings indicate that organic fertilization shields prokaryotes from metal stress, while mineral fertilization exacerbates it, highlighting the benefits of organic practices for maintaining soil health and productivity.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"382 ","pages":"Article 126747"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term organic fertilization shields soil prokaryotes from metal stress while mineral fertilization exacerbates it\",\"authors\":\"Aleksandra Pieńkowska , Jenin Fleischmann , Sören Drabesch , Ines Merbach , Gennuo Wang , Ulisses Rocha , Thomas Reitz , E. Marie Muehe\",\"doi\":\"10.1016/j.envpol.2025.126747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal contamination in agricultural soils threatens prokaryote dynamics essential for soil health and crop productivity. Yet, whether fertilization in the long-run affects their resilience to metals remains unclear. This study examined the biogeochemical impacts of realistically low-dose applications of cadmium, zinc, and lead in soils subjected to 119 years of non-fertilization, mineral-fertilization (NPK), organic-fertilization (manure), or combined mineral-organic fertilization. Amended metals remained in the mobile fraction with the order: mineral < unfertilized < mineral + organic < organic, mirroring the effects on soil prokaryotes. In both unfertilized and mineral-fertilized soils, 16S rRNA gene copy numbers declined by 30 % upon metal addition, but recovery timing differed: in unfertilized soil, recovery began after three days, whereas in mineral-fertilized soil, numbers declined until day seven before recovering. This coincided with an increase in metal-resistant taxa, particularly in mineral-fertilized soil, with 10 significantly affected OTUs, and to a lesser extent in unfertilized soil, with 5 affected OTUs. Carbon-, nitrogen-, and phosphorus-mining enzyme activities increased 50–100 % in mineral-fertilized soils, suggesting enhanced nutrient acquisition to mitigate metal toxicity. In contrast, organic-fertilized soil hosted stable enzymatic activities and microbial copy numbers with minimal community shifts (1 affected OTU), indicating greater resistance to metal amendment. Combined mineral-organic fertilization stabilized copy numbers and enzymatic activity upon metal amendment, but 8 OTUs were affected, including specialized nutrient cyclers, suggesting increased availability of previously adsorbed NPK cations. Our findings indicate that organic fertilization shields prokaryotes from metal stress, while mineral fertilization exacerbates it, highlighting the benefits of organic practices for maintaining soil health and productivity.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"382 \",\"pages\":\"Article 126747\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125011200\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125011200","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long-term organic fertilization shields soil prokaryotes from metal stress while mineral fertilization exacerbates it
Metal contamination in agricultural soils threatens prokaryote dynamics essential for soil health and crop productivity. Yet, whether fertilization in the long-run affects their resilience to metals remains unclear. This study examined the biogeochemical impacts of realistically low-dose applications of cadmium, zinc, and lead in soils subjected to 119 years of non-fertilization, mineral-fertilization (NPK), organic-fertilization (manure), or combined mineral-organic fertilization. Amended metals remained in the mobile fraction with the order: mineral < unfertilized < mineral + organic < organic, mirroring the effects on soil prokaryotes. In both unfertilized and mineral-fertilized soils, 16S rRNA gene copy numbers declined by 30 % upon metal addition, but recovery timing differed: in unfertilized soil, recovery began after three days, whereas in mineral-fertilized soil, numbers declined until day seven before recovering. This coincided with an increase in metal-resistant taxa, particularly in mineral-fertilized soil, with 10 significantly affected OTUs, and to a lesser extent in unfertilized soil, with 5 affected OTUs. Carbon-, nitrogen-, and phosphorus-mining enzyme activities increased 50–100 % in mineral-fertilized soils, suggesting enhanced nutrient acquisition to mitigate metal toxicity. In contrast, organic-fertilized soil hosted stable enzymatic activities and microbial copy numbers with minimal community shifts (1 affected OTU), indicating greater resistance to metal amendment. Combined mineral-organic fertilization stabilized copy numbers and enzymatic activity upon metal amendment, but 8 OTUs were affected, including specialized nutrient cyclers, suggesting increased availability of previously adsorbed NPK cations. Our findings indicate that organic fertilization shields prokaryotes from metal stress, while mineral fertilization exacerbates it, highlighting the benefits of organic practices for maintaining soil health and productivity.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.