利用HaloTag技术可视化PIEZO1在hipsc衍生的单细胞和类器官中的定位和活性

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Gabriella A. Bertaccini, Ignasi Casanellas, Elizabeth L. Evans, Jamison L. Nourse, George D. Dickinson, Gaoxiang Liu, Sayan Seal, Alan T. Ly, Jesse R. Holt, Tharaka D. Wijerathne, Shijun Yan, Elliot E. Hui, Jerome J. Lacroix, Mitradas M. Panicker, Srigokul Upadhyayula, Ian Parker, Medha M. Pathak
{"title":"利用HaloTag技术可视化PIEZO1在hipsc衍生的单细胞和类器官中的定位和活性","authors":"Gabriella A. Bertaccini, Ignasi Casanellas, Elizabeth L. Evans, Jamison L. Nourse, George D. Dickinson, Gaoxiang Liu, Sayan Seal, Alan T. Ly, Jesse R. Holt, Tharaka D. Wijerathne, Shijun Yan, Elliot E. Hui, Jerome J. Lacroix, Mitradas M. Panicker, Srigokul Upadhyayula, Ian Parker, Medha M. Pathak","doi":"10.1038/s41467-025-59150-1","DOIUrl":null,"url":null,"abstract":"<p>PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with advanced imaging, our chemogenetic platform allows precise visualization of PIEZO1 localization dynamics in various cell types. Furthermore, the PIEZO1-HaloTag hiPSC technology facilitates the non-invasive monitoring of channel activity across diverse cell types using Ca<sup>2+</sup>-sensitive HaloTag ligands, achieving temporal resolution approaching that of patch clamp electrophysiology. Finally, we use lightsheet microscopy on hiPSC-derived neural organoids to achieve molecular scale imaging of PIEZO1 in three-dimensional tissue. Our advances establish a platform for studying PIEZO1 mechanotransduction in human systems, with potential for elucidating disease mechanisms and targeted drug screening.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing PIEZO1 localization and activity in hiPSC-derived single cells and organoids with HaloTag technology\",\"authors\":\"Gabriella A. Bertaccini, Ignasi Casanellas, Elizabeth L. Evans, Jamison L. Nourse, George D. Dickinson, Gaoxiang Liu, Sayan Seal, Alan T. Ly, Jesse R. Holt, Tharaka D. Wijerathne, Shijun Yan, Elliot E. Hui, Jerome J. Lacroix, Mitradas M. Panicker, Srigokul Upadhyayula, Ian Parker, Medha M. Pathak\",\"doi\":\"10.1038/s41467-025-59150-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with advanced imaging, our chemogenetic platform allows precise visualization of PIEZO1 localization dynamics in various cell types. Furthermore, the PIEZO1-HaloTag hiPSC technology facilitates the non-invasive monitoring of channel activity across diverse cell types using Ca<sup>2+</sup>-sensitive HaloTag ligands, achieving temporal resolution approaching that of patch clamp electrophysiology. Finally, we use lightsheet microscopy on hiPSC-derived neural organoids to achieve molecular scale imaging of PIEZO1 in three-dimensional tissue. Our advances establish a platform for studying PIEZO1 mechanotransduction in human systems, with potential for elucidating disease mechanisms and targeted drug screening.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59150-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59150-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

PIEZO1对许多生理过程至关重要,可以将各种机械刺激转化为电信号和化学信号。最近的研究强调了可视化内源性PIEZO1活性和定位对了解其功能作用的重要性。为了实现对人PIEZO1的生理学和临床相关研究,我们对人诱导多能干细胞(hiPSCs)进行了基因工程改造,使其表达与内源性PIEZO1融合的HaloTag。结合先进的成像技术,我们的化学发生平台可以精确地可视化PIEZO1在各种细胞类型中的定位动态。此外,PIEZO1-HaloTag hiPSC技术有助于使用Ca2+敏感的HaloTag配体对不同细胞类型的通道活性进行非侵入性监测,实现接近膜片钳电生理学的时间分辨率。最后,我们在hipsc衍生的类神经器官上使用薄层显微镜来实现三维组织中PIEZO1的分子尺度成像。我们的进展为研究PIEZO1在人体系统中的机械转导建立了一个平台,具有阐明疾病机制和靶向药物筛选的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Visualizing PIEZO1 localization and activity in hiPSC-derived single cells and organoids with HaloTag technology

Visualizing PIEZO1 localization and activity in hiPSC-derived single cells and organoids with HaloTag technology

PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with advanced imaging, our chemogenetic platform allows precise visualization of PIEZO1 localization dynamics in various cell types. Furthermore, the PIEZO1-HaloTag hiPSC technology facilitates the non-invasive monitoring of channel activity across diverse cell types using Ca2+-sensitive HaloTag ligands, achieving temporal resolution approaching that of patch clamp electrophysiology. Finally, we use lightsheet microscopy on hiPSC-derived neural organoids to achieve molecular scale imaging of PIEZO1 in three-dimensional tissue. Our advances establish a platform for studying PIEZO1 mechanotransduction in human systems, with potential for elucidating disease mechanisms and targeted drug screening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信