为高效氧化定制铁(VI)配位微环境:配体驱动的电子转移和聚合转向

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Zhi Gao, Yu-Lei Liu, Zhuang-Song Huang, Xiao-Na Zhao, Xian-Shi Wang, Zi-Yi Han, Chong-Wei Cui, Jun Ma, Lu Wang
{"title":"为高效氧化定制铁(VI)配位微环境:配体驱动的电子转移和聚合转向","authors":"Zhi Gao, Yu-Lei Liu, Zhuang-Song Huang, Xiao-Na Zhao, Xian-Shi Wang, Zi-Yi Han, Chong-Wei Cui, Jun Ma, Lu Wang","doi":"10.1038/s41545-025-00488-w","DOIUrl":null,"url":null,"abstract":"<p>Utilizing ligand-mediated homogeneous catalysis to enhance oxidant-driven pollutant removal efficiency presents significant research value while posing substantial challenges. This study utilized ethylenediaminetetraacetic acid (EDTA) to alter the coordination environment of ferrate(VI), thereby steering electron transfer and the phenoxylation pathways to enhance the pollutant removal, which is realized by the complexation-mediated regulation for kinetics and thermodynamics. For example, the introduction of EDTA increased the rate constant of ferrate(VI) oxidizing phenol by four times (from 50.79 M<sup>−1</sup> s<sup>−1</sup> to 208 M<sup>−1</sup> s<sup>−1</sup>) and the stoichiometric ratio (∆[phenol]/∆[K<sub>2</sub>FeO<sub>4</sub>]) from 0.17:1 to 0.22:1. Theoretical calculation and experimental characterization proved that the in-situ formed metastable Fe(VI)-EDTA complex facilitates the electron transfer from Fe(VI) to benzene ring and the phenoxylation pathways. Consequently, the related polymerization products were produced in greater quantities (about 5 times) and with broader diversity than Fe(VI) alone. In the application to real water, the introduction of EDTA reduced more than half of ferrate(VI)’s dosage previously required for completely removing phenol. This study presents a novel strategy for optimizing ferrate(VI) oxidizing pollutants in water treatment, which presents notable environmental benefits by minimizing ferrate(VI) consumption and enhancing pollutant removal efficiency.</p><figure></figure>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"36 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Fe(VI) coordination microenvironment for high-efficiency oxidation: ligand-driven electron transfer and polymerization steering\",\"authors\":\"Zhi Gao, Yu-Lei Liu, Zhuang-Song Huang, Xiao-Na Zhao, Xian-Shi Wang, Zi-Yi Han, Chong-Wei Cui, Jun Ma, Lu Wang\",\"doi\":\"10.1038/s41545-025-00488-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Utilizing ligand-mediated homogeneous catalysis to enhance oxidant-driven pollutant removal efficiency presents significant research value while posing substantial challenges. This study utilized ethylenediaminetetraacetic acid (EDTA) to alter the coordination environment of ferrate(VI), thereby steering electron transfer and the phenoxylation pathways to enhance the pollutant removal, which is realized by the complexation-mediated regulation for kinetics and thermodynamics. For example, the introduction of EDTA increased the rate constant of ferrate(VI) oxidizing phenol by four times (from 50.79 M<sup>−1</sup> s<sup>−1</sup> to 208 M<sup>−1</sup> s<sup>−1</sup>) and the stoichiometric ratio (∆[phenol]/∆[K<sub>2</sub>FeO<sub>4</sub>]) from 0.17:1 to 0.22:1. Theoretical calculation and experimental characterization proved that the in-situ formed metastable Fe(VI)-EDTA complex facilitates the electron transfer from Fe(VI) to benzene ring and the phenoxylation pathways. Consequently, the related polymerization products were produced in greater quantities (about 5 times) and with broader diversity than Fe(VI) alone. In the application to real water, the introduction of EDTA reduced more than half of ferrate(VI)’s dosage previously required for completely removing phenol. This study presents a novel strategy for optimizing ferrate(VI) oxidizing pollutants in water treatment, which presents notable environmental benefits by minimizing ferrate(VI) consumption and enhancing pollutant removal efficiency.</p><figure></figure>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00488-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00488-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用配体介导的均相催化提高氧化驱动的污染物去除效率具有重要的研究价值,但也面临着巨大的挑战。本研究利用乙二胺四乙酸(EDTA)改变高铁酸盐(VI)的配位环境,从而改变电子转移和苯氧基化途径,通过络合介导的动力学和热力学调节来实现污染物的去除。例如,EDTA的引入使高铁酸盐(VI)氧化苯酚的速率常数提高了4倍(从50.79 M−1 s−1提高到208 M−1 s−1),化学计量比(∆[苯酚]/∆[K2FeO4])从0.17:1提高到0.22:1。理论计算和实验表征证明原位形成的亚稳Fe(VI)-EDTA配合物有利于Fe(VI)向苯环的电子转移和苯氧基化途径。因此,相关的聚合产物比单独的Fe(VI)产生更多的数量(约5倍)和更广泛的多样性。在实际水中的应用中,EDTA的引入使高铁酸盐(VI)的用量比以前完全去除苯酚所需的用量减少了一半以上。本研究提出了一种优化高铁酸盐(VI)氧化性污染物的新策略,通过减少高铁酸盐(VI)的消耗和提高污染物的去除效率,具有显著的环境效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring Fe(VI) coordination microenvironment for high-efficiency oxidation: ligand-driven electron transfer and polymerization steering

Tailoring Fe(VI) coordination microenvironment for high-efficiency oxidation: ligand-driven electron transfer and polymerization steering

Utilizing ligand-mediated homogeneous catalysis to enhance oxidant-driven pollutant removal efficiency presents significant research value while posing substantial challenges. This study utilized ethylenediaminetetraacetic acid (EDTA) to alter the coordination environment of ferrate(VI), thereby steering electron transfer and the phenoxylation pathways to enhance the pollutant removal, which is realized by the complexation-mediated regulation for kinetics and thermodynamics. For example, the introduction of EDTA increased the rate constant of ferrate(VI) oxidizing phenol by four times (from 50.79 M−1 s−1 to 208 M−1 s−1) and the stoichiometric ratio (∆[phenol]/∆[K2FeO4]) from 0.17:1 to 0.22:1. Theoretical calculation and experimental characterization proved that the in-situ formed metastable Fe(VI)-EDTA complex facilitates the electron transfer from Fe(VI) to benzene ring and the phenoxylation pathways. Consequently, the related polymerization products were produced in greater quantities (about 5 times) and with broader diversity than Fe(VI) alone. In the application to real water, the introduction of EDTA reduced more than half of ferrate(VI)’s dosage previously required for completely removing phenol. This study presents a novel strategy for optimizing ferrate(VI) oxidizing pollutants in water treatment, which presents notable environmental benefits by minimizing ferrate(VI) consumption and enhancing pollutant removal efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信