{"title":"P - N -异质结Cu2O - Cd(OH)2界面上内置电场触发CO2电还原成近统一CO","authors":"Junjie Ma, Mingying Chen, Quanping Yuan, Xijun Liu, Xucai Yin, Boran Wang, Jing Xu, Huibing He","doi":"10.1002/smll.202501383","DOIUrl":null,"url":null,"abstract":"Cu‐based nanomaterials have attracted great attention as a new generation of CO<jats:sub>2</jats:sub> electroreduction catalysts. However, significant limitations in the selectivity for a single product impede their industrial applications. Herein, the built‐in electric field (BIEF) strategy for the design of Cu‐based nano‐catalysts is reported, achieving near‐unity CO synthesis via the electrocatalytic CO<jats:sub>2</jats:sub> reduction (ECR) on the synthesized P‐N‐heterojunction Cu<jats:sub>2</jats:sub>O‐Cd(OH)<jats:sub>2</jats:sub> catalyst. This catalyst showcases extraordinary selectivity, attaining almost 100% CO Faraday efficiency (<jats:italic>FE<jats:sub>CO</jats:sub></jats:italic>), accompanied by exceptional stability. Furthermore, the industrial‐scale flow battery with Cu<jats:sub>2</jats:sub>O‐Cd(OH)<jats:sub>2</jats:sub> as the cathode manifests <jats:italic>FE<jats:sub>CO</jats:sub></jats:italic> surpassing 99%, a CO partial current density (<jats:italic>j</jats:italic><jats:sub>CO</jats:sub>) as high as 303.21 mA cm<jats:sup>−2</jats:sup>, and a durable cycling life. In situ characterization and density functional theory calculations revealed that the enhanced ECR activity stems from the Cu<jats:sub>2</jats:sub>O‐Cd(OH)<jats:sub>2</jats:sub> catalyst interface, which accelerates the electron transfer from Cd(OH)<jats:sub>2</jats:sub> to Cu<jats:sub>2</jats:sub>O, thus reducing the free energy barrier of CO<jats:sub>2</jats:sub>‐to‐CO reaction intermediates and boosting the CO selectivity. This research offers insights into the construction of BIEF to fabricate efficient Cu‐based catalysts for ECR industrialization.","PeriodicalId":228,"journal":{"name":"Small","volume":"27 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 Electroreduction to Near‐Unity CO Triggered by Built‐in Electric Field Over P‐N‐Heterojunction Cu2O‐Cd(OH)2 Interface\",\"authors\":\"Junjie Ma, Mingying Chen, Quanping Yuan, Xijun Liu, Xucai Yin, Boran Wang, Jing Xu, Huibing He\",\"doi\":\"10.1002/smll.202501383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu‐based nanomaterials have attracted great attention as a new generation of CO<jats:sub>2</jats:sub> electroreduction catalysts. However, significant limitations in the selectivity for a single product impede their industrial applications. Herein, the built‐in electric field (BIEF) strategy for the design of Cu‐based nano‐catalysts is reported, achieving near‐unity CO synthesis via the electrocatalytic CO<jats:sub>2</jats:sub> reduction (ECR) on the synthesized P‐N‐heterojunction Cu<jats:sub>2</jats:sub>O‐Cd(OH)<jats:sub>2</jats:sub> catalyst. This catalyst showcases extraordinary selectivity, attaining almost 100% CO Faraday efficiency (<jats:italic>FE<jats:sub>CO</jats:sub></jats:italic>), accompanied by exceptional stability. Furthermore, the industrial‐scale flow battery with Cu<jats:sub>2</jats:sub>O‐Cd(OH)<jats:sub>2</jats:sub> as the cathode manifests <jats:italic>FE<jats:sub>CO</jats:sub></jats:italic> surpassing 99%, a CO partial current density (<jats:italic>j</jats:italic><jats:sub>CO</jats:sub>) as high as 303.21 mA cm<jats:sup>−2</jats:sup>, and a durable cycling life. In situ characterization and density functional theory calculations revealed that the enhanced ECR activity stems from the Cu<jats:sub>2</jats:sub>O‐Cd(OH)<jats:sub>2</jats:sub> catalyst interface, which accelerates the electron transfer from Cd(OH)<jats:sub>2</jats:sub> to Cu<jats:sub>2</jats:sub>O, thus reducing the free energy barrier of CO<jats:sub>2</jats:sub>‐to‐CO reaction intermediates and boosting the CO selectivity. This research offers insights into the construction of BIEF to fabricate efficient Cu‐based catalysts for ECR industrialization.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202501383\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501383","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
铜基纳米材料作为新一代CO2电还原催化剂受到广泛关注。然而,单一产品选择性的显著限制阻碍了它们的工业应用。本文报道了设计铜基纳米催化剂的内建电场(BIEF)策略,在合成的P - N -异质结Cu2O - Cd(OH)2催化剂上通过电催化CO2还原(ECR)实现了近统一的CO合成。该催化剂表现出非凡的选择性,几乎达到100%的CO法拉第效率(FECO),并具有卓越的稳定性。此外,以Cu2O - Cd(OH)2为阴极的工业规模液流电池显示FECO超过99%,CO分电流密度(jCO)高达303.21 mA cm - 2,并且具有持久的循环寿命。原位表征和密度泛函理论计算表明,ECR活性的增强源于Cu2O - Cd(OH)2催化剂界面,该界面加速了Cd(OH)2向Cu2O的电子转移,从而降低了CO2 - to - CO反应中间体的自由能垒,提高了CO选择性。本研究为构建BIEF为ECR工业化生产高效铜基催化剂提供了新的思路。
CO2 Electroreduction to Near‐Unity CO Triggered by Built‐in Electric Field Over P‐N‐Heterojunction Cu2O‐Cd(OH)2 Interface
Cu‐based nanomaterials have attracted great attention as a new generation of CO2 electroreduction catalysts. However, significant limitations in the selectivity for a single product impede their industrial applications. Herein, the built‐in electric field (BIEF) strategy for the design of Cu‐based nano‐catalysts is reported, achieving near‐unity CO synthesis via the electrocatalytic CO2 reduction (ECR) on the synthesized P‐N‐heterojunction Cu2O‐Cd(OH)2 catalyst. This catalyst showcases extraordinary selectivity, attaining almost 100% CO Faraday efficiency (FECO), accompanied by exceptional stability. Furthermore, the industrial‐scale flow battery with Cu2O‐Cd(OH)2 as the cathode manifests FECO surpassing 99%, a CO partial current density (jCO) as high as 303.21 mA cm−2, and a durable cycling life. In situ characterization and density functional theory calculations revealed that the enhanced ECR activity stems from the Cu2O‐Cd(OH)2 catalyst interface, which accelerates the electron transfer from Cd(OH)2 to Cu2O, thus reducing the free energy barrier of CO2‐to‐CO reaction intermediates and boosting the CO selectivity. This research offers insights into the construction of BIEF to fabricate efficient Cu‐based catalysts for ECR industrialization.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.