论单分枝无限伽罗瓦扩展

IF 1.2 2区 数学 Q1 MATHEMATICS
Farshid Hajir, Michael Larsen, Christian Maire, Ravi Ramakrishna
{"title":"论单分枝无限伽罗瓦扩展","authors":"Farshid Hajir,&nbsp;Michael Larsen,&nbsp;Christian Maire,&nbsp;Ravi Ramakrishna","doi":"10.1112/jlms.70209","DOIUrl":null,"url":null,"abstract":"<p>For a number field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, we consider <span></span><math>\n <semantics>\n <msup>\n <mi>K</mi>\n <mi>ta</mi>\n </msup>\n <annotation>$K^{{\\rm ta}}$</annotation>\n </semantics></math> the maximal tamely ramified algebraic extension of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, and its Galois group <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>G</mi>\n <mi>K</mi>\n <mi>ta</mi>\n </msubsup>\n <mo>=</mo>\n <mi>Gal</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>K</mi>\n <mi>ta</mi>\n </msup>\n <mo>/</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$G^{{\\rm ta}}_K= \\mathrm{Gal}(K^{{\\rm ta}}/K)$</annotation>\n </semantics></math>. Choose an odd prime <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. Our guiding aim is to characterize the finitely generated pro-<span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> quotients of <span></span><math>\n <semantics>\n <msubsup>\n <mi>G</mi>\n <mi>K</mi>\n <mi>ta</mi>\n </msubsup>\n <annotation>$G^{{\\rm ta}}_K$</annotation>\n </semantics></math>. We give a unified point of view by introducing the notion of <i>stably inertially generated</i> pro-<span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> groups <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, for which linear groups are archetypes. This key notion is compatible with local <i>tame liftings</i> as used in the Scholz–Reichardt theorem. We realize every finitely generated pro-<span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> which is stably inertially generated as a quotient of <span></span><math>\n <semantics>\n <msubsup>\n <mi>G</mi>\n <mi>K</mi>\n <mi>ta</mi>\n </msubsup>\n <annotation>$G^{{\\rm ta}}_K$</annotation>\n </semantics></math>. Further examples of groups that we realize as quotients of <span></span><math>\n <semantics>\n <msubsup>\n <mi>G</mi>\n <mi>K</mi>\n <mi>ta</mi>\n </msubsup>\n <annotation>$G^{{\\rm ta}}_K$</annotation>\n </semantics></math> include congruence subgroups of special linear groups over <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mi>p</mi>\n </msub>\n <mo>⟦</mo>\n <msub>\n <mi>T</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>T</mi>\n <mi>n</mi>\n </msub>\n <mo>⟧</mo>\n </mrow>\n <annotation>${ \\mathbb {Z} }_p\\llbracket T_1, \\ldots, T_n \\rrbracket$</annotation>\n </semantics></math>. Finally, we give classes of groups which cannot be realized as quotients of <span></span><math>\n <semantics>\n <msubsup>\n <mi>G</mi>\n <mi>Q</mi>\n <mi>ta</mi>\n </msubsup>\n <annotation>$G^{\\rm ta}_{{\\mathbb {Q}}}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On tamely ramified infinite Galois extensions\",\"authors\":\"Farshid Hajir,&nbsp;Michael Larsen,&nbsp;Christian Maire,&nbsp;Ravi Ramakrishna\",\"doi\":\"10.1112/jlms.70209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a number field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, we consider <span></span><math>\\n <semantics>\\n <msup>\\n <mi>K</mi>\\n <mi>ta</mi>\\n </msup>\\n <annotation>$K^{{\\\\rm ta}}$</annotation>\\n </semantics></math> the maximal tamely ramified algebraic extension of <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, and its Galois group <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>G</mi>\\n <mi>K</mi>\\n <mi>ta</mi>\\n </msubsup>\\n <mo>=</mo>\\n <mi>Gal</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>K</mi>\\n <mi>ta</mi>\\n </msup>\\n <mo>/</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$G^{{\\\\rm ta}}_K= \\\\mathrm{Gal}(K^{{\\\\rm ta}}/K)$</annotation>\\n </semantics></math>. Choose an odd prime <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. Our guiding aim is to characterize the finitely generated pro-<span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> quotients of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>G</mi>\\n <mi>K</mi>\\n <mi>ta</mi>\\n </msubsup>\\n <annotation>$G^{{\\\\rm ta}}_K$</annotation>\\n </semantics></math>. We give a unified point of view by introducing the notion of <i>stably inertially generated</i> pro-<span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> groups <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>, for which linear groups are archetypes. This key notion is compatible with local <i>tame liftings</i> as used in the Scholz–Reichardt theorem. We realize every finitely generated pro-<span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> which is stably inertially generated as a quotient of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>G</mi>\\n <mi>K</mi>\\n <mi>ta</mi>\\n </msubsup>\\n <annotation>$G^{{\\\\rm ta}}_K$</annotation>\\n </semantics></math>. Further examples of groups that we realize as quotients of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>G</mi>\\n <mi>K</mi>\\n <mi>ta</mi>\\n </msubsup>\\n <annotation>$G^{{\\\\rm ta}}_K$</annotation>\\n </semantics></math> include congruence subgroups of special linear groups over <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>⟦</mo>\\n <msub>\\n <mi>T</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>T</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>⟧</mo>\\n </mrow>\\n <annotation>${ \\\\mathbb {Z} }_p\\\\llbracket T_1, \\\\ldots, T_n \\\\rrbracket$</annotation>\\n </semantics></math>. Finally, we give classes of groups which cannot be realized as quotients of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>G</mi>\\n <mi>Q</mi>\\n <mi>ta</mi>\\n </msubsup>\\n <annotation>$G^{\\\\rm ta}_{{\\\\mathbb {Q}}}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70209\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70209","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个数字域K$ K$,我们认为K$ ta $K^{{\rm ta}}$是K$ K$的最大线性分支代数扩展,其伽罗瓦群G K ta = Gal (K ta /K)$ G^{{\rm ta}}_K= \mathrm{Gal}(K^{{\rm ta}}/K)$。选择一个奇数素数p$ p$。我们的指导目标是表征有限生成的G K ta $G^{{\rm ta}}_K$的pro- p$ p$商。通过引入稳定惯性生成的pro- p$ p$群G$ G$的概念,给出了一个统一的观点,其中线性群是原型。这个关键概念与Scholz-Reichardt定理中使用的局部驯服提升是相容的。我们实现了每一个有限生成的pro- p$ p$群G$ G$,它稳定地惯性生成为G K的商G$ G^{{\rm ta}}_K$。我们认识到的G K ta $G^{{\rm ta}}_K$商的进一步例子包括Z p∈t1上的特殊线性群的同余子群,…,T n n ${\mathbb {Z}}_p\ ll括号T_1, \ldots, T_n \ rr括号$。最后,我们给出了不能被实现为gq的商的群的类G^{\rm ta}_{{\mathbb {Q}}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On tamely ramified infinite Galois extensions

On tamely ramified infinite Galois extensions

On tamely ramified infinite Galois extensions

On tamely ramified infinite Galois extensions

For a number field K $K$ , we consider K ta $K^{{\rm ta}}$ the maximal tamely ramified algebraic extension of K $K$ , and its Galois group G K ta = Gal ( K ta / K ) $G^{{\rm ta}}_K= \mathrm{Gal}(K^{{\rm ta}}/K)$ . Choose an odd prime p $p$ . Our guiding aim is to characterize the finitely generated pro- p $p$ quotients of G K ta $G^{{\rm ta}}_K$ . We give a unified point of view by introducing the notion of stably inertially generated pro- p $p$ groups G $G$ , for which linear groups are archetypes. This key notion is compatible with local tame liftings as used in the Scholz–Reichardt theorem. We realize every finitely generated pro- p $p$ group G $G$ which is stably inertially generated as a quotient of G K ta $G^{{\rm ta}}_K$ . Further examples of groups that we realize as quotients of G K ta $G^{{\rm ta}}_K$ include congruence subgroups of special linear groups over Z p T 1 , , T n ${ \mathbb {Z} }_p\llbracket T_1, \ldots, T_n \rrbracket$ . Finally, we give classes of groups which cannot be realized as quotients of G Q ta $G^{\rm ta}_{{\mathbb {Q}}}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信