基于观测器的双层多智能体流行病模型自适应鲁棒控制:物理层和信息层

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Zohreh Abbasi, Xinzhi Liu
{"title":"基于观测器的双层多智能体流行病模型自适应鲁棒控制:物理层和信息层","authors":"Zohreh Abbasi,&nbsp;Xinzhi Liu","doi":"10.1049/cth2.70052","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an innovative dual-layer multi-agent-based SIS epidemic model, incorporating a physical contact layer to model disease spread through travel or migration between cities, and an information layer to enable the sharing of infection data among healthcare providers across cities even without direct physical connections. An observer is designed to estimate the infected fraction in each city, utilising estimates from neighbouring cities connected in the physical layer in a distributed manner; these estimates are then leveraged in the information layer to synchronise each city's infection trajectory with a virtual leader. Additionally, the control input, typically formulated in multi-agent systems (MAS), is adopted as the sliding surface, with its stability demonstrated via Lyapunov analysis within the dual-layer SIS framework. An adaptive sliding mode control (ASMC) strategy is developed to address parameter uncertainties to reach this sliding surface, effectively integrating the physical and information layers’ dynamics to drive cities toward disease eradication. Finally, a numerical example is provided to validate the accuracy of the theoretical results.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70052","citationCount":"0","resultStr":"{\"title\":\"Observer-Based Adaptive Robust Control of Dual-Layer Multiagent Epidemic Model: Physical and Information Layers\",\"authors\":\"Zohreh Abbasi,&nbsp;Xinzhi Liu\",\"doi\":\"10.1049/cth2.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes an innovative dual-layer multi-agent-based SIS epidemic model, incorporating a physical contact layer to model disease spread through travel or migration between cities, and an information layer to enable the sharing of infection data among healthcare providers across cities even without direct physical connections. An observer is designed to estimate the infected fraction in each city, utilising estimates from neighbouring cities connected in the physical layer in a distributed manner; these estimates are then leveraged in the information layer to synchronise each city's infection trajectory with a virtual leader. Additionally, the control input, typically formulated in multi-agent systems (MAS), is adopted as the sliding surface, with its stability demonstrated via Lyapunov analysis within the dual-layer SIS framework. An adaptive sliding mode control (ASMC) strategy is developed to address parameter uncertainties to reach this sliding surface, effectively integrating the physical and information layers’ dynamics to drive cities toward disease eradication. Finally, a numerical example is provided to validate the accuracy of the theoretical results.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70052\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70052","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种创新的双层多智能体SIS流行病模型,其中包括一个物理接触层,用于模拟疾病通过城市间的旅行或迁移传播,以及一个信息层,以便在没有直接物理连接的情况下,在不同城市的医疗保健提供者之间共享感染数据。设计一个观察者来估计每个城市的感染比例,利用以分布式方式在物理层连接的邻近城市的估计值;然后在信息层利用这些估计,将每个城市的感染轨迹与虚拟领导者同步。此外,通常在多智能体系统(MAS)中制定的控制输入被用作滑动面,其稳定性通过双层SIS框架内的Lyapunov分析来证明。提出了一种自适应滑模控制(ASMC)策略,以解决参数的不确定性,有效地整合物理层和信息层的动态,推动城市走向根除疾病。最后通过数值算例验证了理论结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observer-Based Adaptive Robust Control of Dual-Layer Multiagent Epidemic Model: Physical and Information Layers

Observer-Based Adaptive Robust Control of Dual-Layer Multiagent Epidemic Model: Physical and Information Layers

This paper proposes an innovative dual-layer multi-agent-based SIS epidemic model, incorporating a physical contact layer to model disease spread through travel or migration between cities, and an information layer to enable the sharing of infection data among healthcare providers across cities even without direct physical connections. An observer is designed to estimate the infected fraction in each city, utilising estimates from neighbouring cities connected in the physical layer in a distributed manner; these estimates are then leveraged in the information layer to synchronise each city's infection trajectory with a virtual leader. Additionally, the control input, typically formulated in multi-agent systems (MAS), is adopted as the sliding surface, with its stability demonstrated via Lyapunov analysis within the dual-layer SIS framework. An adaptive sliding mode control (ASMC) strategy is developed to address parameter uncertainties to reach this sliding surface, effectively integrating the physical and information layers’ dynamics to drive cities toward disease eradication. Finally, a numerical example is provided to validate the accuracy of the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信